大于k的部分直接加k
对于小于等于k的cnt个数 ans=cnt*k - Σ(k/i * i)
然后k/i在一段区间内不变,这段区间直接可以数列求和

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} ll n, k, ans; int main(RG int argc, RG char* argv[]){
n = Read(); k = Read();
if(n > k) ans = (n - k) * k, n = k;
ans += n * k;
for(RG ll l = 1, r = n; l <= n; l = r + 1){
r = min(n, k / (k / l));
ans -= (k / l) * (r - l + 1) * (l + r) >> 1;
}
printf("%lld\n", ans);
return 0;
}

[CQOI2007]余数求和的更多相关文章

  1. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  2. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  3. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  4. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  5. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  6. 题解 P2261【[CQOI2007]余数求和】

    P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...

  7. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  8. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  9. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

随机推荐

  1. iOS 使用NTP时间同步服务

    githup上有相关开源库, ios-ntp 导入即可使用 NetworkClock *netClock = [NetworkClock sharedNetworkClock]; netClock.n ...

  2. mysql 查找某个表在哪个库

    SELECT table_schema FROM information_schema.TABLES WHERE table_name = '表名';

  3. Spring Boot - Font Awesome OTS parsing error: Failed to convert 字体加载失败

    字体文件,加载不出来 解决方案  一 问题是Maven正在过滤字体文件并破坏它们. <resource> <directory>${project.basedir}/src/m ...

  4. Spring_Spring与DAO_Spring的Jdbc模板

    一.导入Jar包 二.定义实体类与DB表 public class Student { private Integer id; private String name; private int age ...

  5. js中checkbox的全选和反选的实现

    <head> <meta charset="utf-8"/> <script type="text/javascript"> ...

  6. Java进阶之路——从初级程序员到架构师,从小工到专家

    原创文章 怎样学习才能从一名Java初级程序员成长为一名合格的架构师,或者说一名合格的架构师应该有怎样的技术知识体系,这是不仅一个刚刚踏入职场的初级程序员也是工作三五年之后开始迷茫的老程序员经常会问到 ...

  7. 剑指offer第五天

    28.数组中出现次数超过一半的数字 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数 ...

  8. 《android开发艺术探索》读书笔记(六)--Drawable

    接上篇<android开发艺术探索>读书笔记(五)--RemoteViews [BitmapDrawable] 简单的图片 <!xml version="1.0" ...

  9. uva10410 栈

    根据DFS和BFS重建树. BFS反映了当前节点到达根结点的距离,通过栈把当前处理的树或则子树的根结点放在栈顶,通过遍历DFS序列,判断当前元素与栈顶元素的关系,如果是子节点,就将它压入栈中成为新的栈 ...

  10. HDU - 1043 A* + 康托 [kuangbin带你飞]专题二

    这题我第一次用的bfs + ELFhash,直接TLE,又换成bfs + 康托还是TLE,5000ms都过不了!!我一直调试,还是TLE,我才发觉应该是方法的问题. 今天早上起床怒学了一波A*算法,因 ...