Apriori算法和FPTree算法都是数据挖掘中的关联规则挖掘算法,处理的都是最简单的单层单维布尔关联规则。

Apriori算法

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。是基于这样的事实:算法使用频繁项集性质的先验知识。Apriori使用一种称作逐层搜索的迭代方法,k-项集用于探索(k+1)-项集。首先,找出频繁1-项集的集合。该集合记作L1L1用于找频繁2-项集的集合L2,而L2用于找L3,如此下去,直到不能找到频繁k-项集。找每个Lk需要一次数据库扫描。

这个算法的思路,简单的说就是如果集合I不是频繁项集,那么所有包含集合I的更大的集合也不可能是频繁项集。

算法原始数据如下:

TID

List of item_ID’s

T100

T200

T300

T400

T500

T600

T700

T800

T900

I1,I2,I5

I2,I4

I2,I3

I1,I2,I4

I1,I3

I2,I3

I1,I3

I1,I2,I3,I5

I1,I2,I3

算法的基本过程如下图:

首先扫描所有事务,得到1-项集C1,根据支持度要求滤去不满足条件项集,得到频繁1-项集。

下面进行递归运算:

已知频繁k-项集(频繁1-项集已知),根据频繁k-项集中的项,连接得到所有可能的K+1_项,并进行剪枝(如果该k+1_项集的所有k项子集不都能满足支持度条件,那么该k+1_项集被剪掉),得到项集,然后滤去该项集中不满足支持度条件的项得到频繁k+1-项集。如果得到的项集为空,则算法结束。

连接的方法:假设项集中的所有项都是按照相同的顺序排列的,那么如果[i]和[j]中的前k-1项都是完全相同的,而第k项不同,则[i]和[j]是可连接的。比如中的{I1,I2}和{I1,I3}就是可连接的,连接之后得到{I1,I2,I3},但是{I1,I2}和{I2,I3}是不可连接的,否则将导致项集中出现重复项。

关于剪枝再举例说明一下,如在由生成的过程中,列举得到的3_项集包括{I1,I2,I3},{I1,I3,I5},{I2,I3,I4},{I2,I3,I5},{I2,I4,I5},但是由于{I3,I4}和{I4,I5}没有出现在中,所以{I2,I3,I4},{I2,I3,I5},{I2,I4,I5}被剪枝掉了。

海量数据下,Apriori算法的时空复杂度都不容忽视。

空间复杂度:如果数量达到的量级,那么中的候选项将达到的量级。

时间复杂度:每计算一次就需要扫描一遍数据库。

FP-Tree算法

FPTree算法:在不生成候选项的情况下,完成Apriori算法的功能。

FPTree算法的基本数据结构,包含一个一棵FP树和一个项头表,每个项通过一个结点链指向它在树中出现的位置。基本结构如下所示。需要注意的是项头表需要按照支持度递减排序,在FPTree中高支持度的节点只能是低支持度节点的祖先节点。

另外还要交代一下FPTree算法中几个基本的概念:

FP-Tree:就是上面的那棵树,是把事务数据表中的各个事务数据项按照支持度排序后,把每个事务中的数据项按降序依次插入到一棵以NULL为根结点的树中,同时在每个结点处记录该结点出现的支持度。

条件模式基:包含FP-Tree中与后缀模式一起出现的前缀路径的集合。也就是同一个频繁项在PF树中的所有节点的祖先路径的集合。比如I3在FP树中一共出现了3次,其祖先路径分别是{I2,I1:2(频度为2)},{I2:2}和{I1:2}。这3个祖先路径的集合就是频繁项I3的条件模式基。

条件树:将条件模式基按照FP-Tree的构造原则形成的一个新的FP-Tree。比如上图中I3的条件树就是:

1、 构造项头表:扫描数据库一遍,得到频繁项的集合F和每个频繁项的支持度。把F按支持度递降排序,记为L。

2、 构造原始FPTree:把数据库中每个事物的频繁项按照L中的顺序进行重排。并按照重排之后的顺序把每个事物的每个频繁项插入以null为根的FPTree中。如果插入时频繁项节点已经存在了,则把该频繁项节点支持度加1;如果该节点不存在,则创建支持度为1的节点,并把该节点链接到项头表中。

3、 调用FP-growth(Tree,null)开始进行挖掘。伪代码如下:

procedure FP_growth(Tree,
a)

if
Tree
含单个路径P then{

         for
路径P中结点的每个组合(记作b

产生模式b U
a,其支持度support = b 中结点的最小支持度;

} else {

         for each
a iTree的头部(按照支持度由低到高顺序进行扫描){

产生一个模式b =
a i U a,其支持度support = a i .support

构造b的条件模式基,然后构造b的条件FP-树Treeb;

                  if
Treeb 不为空 then

调用 FP_growth (Treeb,
b);

}

}

FP-growth是整个算法的核心,再多啰嗦几句。

FP-growth函数的输入:tree是指原始的FPTree或者是某个模式的条件FPTree,a是指模式的后缀(在第一次调用时a=NULL,在之后的递归调用中a是模式后缀)

FP-growth函数的输出:在递归调用过程中输出所有的模式及其支持度(比如{I1,I2,I3}的支持度为2)。每一次调用FP_growth输出结果的模式中一定包含FP_growth函数输入的模式后缀。

我们来模拟一下FP-growth的执行过程。

1、 在FP-growth递归调用的第一层,模式前后a=NULL,得到的其实就是频繁1-项集。

2、 对每一个频繁1-项,进行递归调用FP-growth()获得多元频繁项集。

下面举两个例子说明FP-growth的执行过程。

1、I5的条件模式基是(I2 I1:1), (I2 I1 I3:1),I5构造得到的条件FP-树如下。然后递归调用FP-growth,模式后缀为I5。这个条件FP-树是单路径的,在FP_growth中直接列举{I2:2,I1:2,I3:1}的所有组合,之后和模式后缀I5取并集得到支持度>2的所有模式:{ I2 I5:2, I1 I5:2, I2 I1 I5:2}。

2、I5的情况是比较简单的,因为I5对应的条件FP-树是单路径的,我们再来看一下稍微复杂一点的情况I3。I3的条件模式基是(I2 I1:2), (I2:2), (I1:2),生成的条件FP-树如左下图,然后递归调用FP-growth,模式前缀为I3。I3的条件FP-树仍然是一个多路径树,首先把模式后缀I3和条件FP-树中的项头表中的每一项取并集,得到一组模式{I2 I3:4, I1 I3:4},但是这一组模式不是后缀为I3的所有模式。还需要递归调用FP-growth,模式后缀为{I1,I3},{I1,I3}的条件模式基为{I2:2},其生成的条件FP-树如右下图所示。这是一个单路径的条件FP-树,在FP_growth中把I2和模式后缀{I1,I3}取并得到模式{I1
I2 I3:2}。理论上还应该计算一下模式后缀为{I2,I3}的模式集,但是{I2,I3}的条件模式基为空,递归调用结束。最终模式后缀I3的支持度>2的所有模式为:{ I2 I3:4, I1 I3:4, I1 I2 I3:2}

        

根据FP-growth算法,最终得到的支持度>2频繁模式如下:

item

条件模式基

条件FP-树

产生的频繁模式

I5

I4

I3

I1

{(I2 I1:1),(I2 I1 I3:1)

{(I2 I1:1), (I2:1)}

{(I2 I1:2), (I2:2), (I1:2)}

{(I2:4)}

<I2:2, I1:2>

<I2:2>

<I2:4, I1:2>, <I1:2>

<I2:4>

I2 I5:2, I1 I5:2, I2 I1 I5:2

I2 I4:2

I2 I3:4, I1 I3:4, I2 I1 I3:2

I2 I1:4

FP-growth算法比Apriori算法快一个数量级,在空间复杂度方面也比Apriori也有数量级级别的优化。但是对于海量数据,FP-growth的时空复杂度仍然很高,可以采用的改进方法包括数据库划分,数据采样等等。

Apriori和FPTree的更多相关文章

  1. 频繁模式挖掘 Apriori算法 FP-tree

    啤酒 尿布 组合营销 X=>Y,其中x属于项集I,Y属于项集I,且X.Y的交集等于空集. 2类算法 Apriori算法 不断地构造候选集.筛选候选集来挖掘出频繁项集,需要多次扫描原始数据.磁盘I ...

  2. FP-Tree算法的实现

    在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支,韩嘉炜老师的FP-Tree算法就是其中非常高效 ...

  3. 关联规则 -- apriori 和 FPgrowth 的基本概念及基于python的算法实现

    apriori 使用Apriori算法进行关联分析 貌似网上给的代码是这个大牛写的 关联规则挖掘及Apriori实现购物推荐  老师 Apriori 的python算法实现 python实现关联规则  ...

  4. FP-Tree -关联规则挖掘算法(转载)

    在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支 支持度和置信度 严格地说Apriori和FP- ...

  5. Aprior算法

    在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支,韩嘉炜老师的FP-Tree算法就是其中非常高效 ...

  6. FPGrowth 实现

    在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支,韩嘉炜老师的FP-Tree算法就是其中非常高效 ...

  7. python推荐书籍

    推荐的python电子书 python学习路线图 优先级 入门:python核心编程 提高:python cookbook 其他 (1).数据分析师 需要有深厚的数理统计基础,但是对程序开发能力不做要 ...

  8. FP-tree推荐算法

    推荐算法大致分为: 基于物品和用户本身 基于关联规则 基于模型的推荐 基于物品和用户本身 基于物品和用户本身的,这种推荐引擎将每个用户和每个物品都当作独立的实体,预测每个用户对于每个物品的喜好程度,这 ...

  9. Apriori算法原理总结

    Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策.比如在常见的超市购物数据集,或者电商的网购数据集中,如果我们找到了 ...

随机推荐

  1. Mac版Android Studio的安装和使用

    Android Studio已经出来很长时间了,据说谷歌会逐步放弃对Eclipse的支持,而把心思完全放在Android Studio上,鉴于Eclipse的各种不稳定,或许这将成一种趋势,因此,没事 ...

  2. [python] 带有参数并且传递参数的装饰器

    场景时这样的,我有个一大堆任务,我要给这些任务计时,入库.就需要一个带有参数的装饰器来记录任务名称, 在任务执行前和执行之后都需要记录任务当时执行的时刻. #-*- encoding=utf-8 -* ...

  3. 【一天一道LeetCode】#299. Bulls and Cows

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 You are ...

  4. 【转载】图灵AngularJS入门教程

    摘自图灵的AngularJS入门教程:http://www.ituring.com.cn/article/13471 感觉非常不错,所以推荐到首页一下! (一)Hello World! 开始学习Ang ...

  5. 深入浅出Java MVC(Model View Controller) ---- (JSP + servlet + javabean实例)

    在DRP中终于接触到了MVC,感触是确实这样的架构系统灵活性不少,现在感触最深的就是使用tomcat作为服务器发布比IIS好多了,起码发布很简单,使用起来方便. 首先来简单的学习一下MVC的基础知识, ...

  6. Java进阶(一)Java内存解析

    栈.堆.常量池等虽同属Java内存分配时操作的区域,但其适用范围和功用却大不相同.本文将深入Java核心,简单讲解Java内存分配方面的知识. 首先我们先来讲解一下内存中的各个区域. stack(栈) ...

  7. cocos2d-js(一)引擎的工作原理和文件的调用顺序

    Cocos2d-js可以实现在网页上运行高性能的2D游戏,实现原理是通过HTML5的canvas标签,该引擎采用Javascript编写,并且有自己的一些语法,因为没有成熟的IDE,一般建立工程是通过 ...

  8. UNIX环境高级编程——主线程与子线程的退出关系

    我们在一个线程中经常会创建另外的新线程,如果主线程退出,会不会影响它所创建的新线程呢?下面就来讨论一下. 1.  主线程等待新线程先结束退出,主线程后退出.正常执行. 示例代码: #include & ...

  9. 【Unity Shaders】Reflecting Your World —— 在Unity3D中创建一个简单的动态Cubemap系统

    本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...

  10. AngularJS 入门教程 $http is not defined 解决方案

    采用从git下载的教程, www.angularjs.cn 版本的 入门教程,在第5步的时候 签出文件: git checkout -f step-5 运行将会提示: $http is not def ...