修改+查询第k小值

单纯主席树修改会打乱所有,所以再套一个树状数组维护前缀和使得修改,查询都是log

对了,bzoj上不需要读入组数,蜜汁re。。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
int n,m,sz,T,num_tot,num_cnt,num_l,num_r;
int sum[8000005],lon[8000005],ron[8000005],num[60005];
int a[50005],k[10005],p[10005],q[10005],root[60005];
bool bo[10005];
int L[500],R[500];
int lowbit(int x){return x&(-x);}
void update(int p,int &rt,int l,int r,int x,int y){
rt=++sz; sum[rt]=sum[p]+y;
lon[rt]=lon[p]; ron[rt]=ron[p];
if(l==r) return;
int mid=(l+r)/2;
if(x<=mid) update(lon[p],lon[rt],l,mid,x,y);
else update(ron[p],ron[rt],mid+1,r,x,y);
}
int query(int l,int r,int k){
if(l==r) return l;
int suml=0,sumr=0;
for(int i=1;i<=num_l;i++) suml+=sum[lon[L[i]]];
for(int i=1;i<=num_r;i++) sumr+=sum[lon[R[i]]];
int mid=(l+r)/2;
if(sumr-suml>=k){
for(int i=1;i<=num_l;i++) L[i]=lon[L[i]];
for(int i=1;i<=num_r;i++) R[i]=lon[R[i]];
return query(l,mid,k);
}
else{
for(int i=1;i<=num_l;i++) L[i]=ron[L[i]];
for(int i=1;i<=num_r;i++) R[i]=ron[R[i]];
return query(mid+1,r,k-(sumr-suml));
}
}
int main()
{
char s[5];
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
num[i]=a[i];
} num_tot=n;
for(int i=1;i<=m;i++){
scanf("%s",s);
if(s[0]=='Q')
scanf("%d%d%d",&p[i],&q[i],&k[i]);
else{
scanf("%d%d",&p[i],&q[i]);
num[++num_tot]=q[i]; bo[i]=1;
}
}
sort(num+1,num+num_tot+1);
int num_cnt=unique(num+1,num+num_tot+1)-num-1;
for(int i=1;i<=n;i++){
int t=lower_bound(num+1,num+num_cnt+1,a[i])-num;
for(int j=i;j<=n;j+=lowbit(j))
update(root[j],root[j],1,num_cnt,t,1);
}
for(int i=1;i<=m;i++){
if(bo[i]){
int t=lower_bound(num+1,num+num_cnt+1,a[p[i]])-num;
for(int j=p[i];j<=n;j+=lowbit(j))
update(root[j],root[j],1,num_cnt,t,-1);
a[p[i]]=q[i];
t=lower_bound(num+1,num+num_cnt+1,q[i])-num;
for(int j=p[i];j<=n;j+=lowbit(j))
update(root[j],root[j],1,num_cnt,t,1);
}
else{
p[i]--; num_l=num_r=0;
for(int j=p[i];j>0;j-=lowbit(j))
L[++num_l]=root[j];
for(int j=q[i];j>0;j-=lowbit(j))
R[++num_r]=root[j];
printf("%d\n",num[query(1,num_cnt,k[i])]);
}
}
return 0;
}

bzoj 1901 主席树+树状数组的更多相关文章

  1. BZOJ.1901.Dynamic Rankings(树状数组套主席树(动态主席树))

    题目链接 BZOJ 洛谷 区间第k小,我们可以想到主席树.然而这是静态的,怎么支持修改? 静态的主席树是利用前缀和+差分来求解的,那么对于每个位置上的每棵树看做一个点,拿树状数组更新. 还是树状数组的 ...

  2. BZOJ 1901 Dynamic Rankings 树董事长

    标题效果:间隔可以改变k少 我的两个天树牌主席... 隔断Count On A Tree 之后我一直认为,随着树的主席的变化是分域林木覆盖率可持久段树. .. 事实上,我是误导... 尼可持久化线段树 ...

  3. [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】

    题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...

  4. CodeForces -163E :e-Government (AC自动机+DFS序+树状数组)

    The best programmers of Embezzland compete to develop a part of the project called "e-Governmen ...

  5. 【BZOJ】1901: Zju2112 Dynamic Rankings(区间第k小+树状数组套主席树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1901 首先还是吐槽时间,我在zoj交无限tle啊!!!!!!!!我一直以为是程序错了啊啊啊啊啊啊. ...

  6. BZOJ 1901 Zju2112 Dynamic Rankings ——树状数组套主席树

    [题目分析] BZOJ这个题目抄的挺霸气. 主席树是第一时间想到的,但是修改又很麻烦. 看了别人的题解,原来还是可以用均摊的思想,用树状数组套主席树. 学到了新的姿势,2333o(* ̄▽ ̄*)ブ [代 ...

  7. Bzoj 1901: Zju2112 Dynamic Rankings 主席树,可持久,树状数组,离散化

    1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 6321  Solved: 2628[Su ...

  8. bzoj 1901: Zju2112 Dynamic Rankings -- 主席树,树状数组,哈希

    1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec  Memory Limit: 128 MB Description 给定一个含有n个数的序列a[1] ...

  9. 【BZOJ 1901】【Zju 2112】 Dynamic Rankings 动态K值 树状数组套主席树模板题

    达神题解传送门:http://blog.csdn.net/dad3zz/article/details/50638360 说一下我对这个模板的理解: 看到这个方法很容易不知所措,因为动态K值需要套树状 ...

随机推荐

  1. 开源一个IE下获取XPath小工具,支持32/64位

    背景是曾经友情支持了测试组一小段时间,发现他们使用selenium做页面的自动化测试,需要用到XPath,但IE下没有获取XPath的工具,只能在Firefox和chrome下获取,步骤还比较麻烦.而 ...

  2. spring mvc和spring的区别

    springmvc只是spring其中的一部分. spring 可以 支持 hibernate ,ibatis ,JMS,JDBC 支持事务管理, 注解功能,表达式语言,测试 springmvc 就是 ...

  3. linux利用命令重置大量密码

     yum -y install expectmkpasswd -l 10 -v was | grep 'is *'  >> 123.txtmkpasswd -l 10 -v logv |  ...

  4. SQL Server 表的管理_关于完整性约束的详解(案例代码)

    SQL Server 表的管理之_关于完整性约束的详解 一.概述: ●约束是SQL Server提供的自动保持数据库完整性的一种方法, 它通过限制字段中数据.记录中数据和表之间的数据来保证数据的完整性 ...

  5. nginx防盗链

    盗链是指一个网站的资源(图片或附件)未经允许在其它网站提供浏览和下载.尤其热门资源的盗链,对网站带宽的消耗非常大,本文通过nginx的配置指令location来实现简单的图片和其它类型文件的防盗链. ...

  6. Centos7查看IP

    查看IP ip addr : lo: <LOOPBACK,UP,LOWER_UP> mtu qdisc noqueue state UNKNOWN qlen link/loopback : ...

  7. HTML5学习系列之表单与文件

    article元素 article元素代表文档.页面或应用程序中独立的.完整的.可以独自被外部引用的内容.它可以是一篇博客或报刊中的文章.一篇论坛帖子.一段用户评论或独立的插件,或者其他任何独立的内容 ...

  8. hadoop环境运行程序出现 Retrying connect to server 问题

    程序运行时出现如下问题: 从网上查资料,有说重启format的..有说/etc/hosts出问题的... 反正都试了一遍..还是有这个问题 后来看日志,发现问题是访问服务器9001端口访问不到..开始 ...

  9. java后台服务器实现极光推送

    一.添加极光推送所需要的jar包,项目使用的maven,所以只需要在pom文件里添加jar包依赖 <dependency> <groupId>cn.jpush.api</ ...

  10. HTML5总结

    HTML的定义 HyperText Markup Language 超文本标记语言 超级文本标记语言是标准通用标记语言下的一个应用,也是一种规范,一种标准, 它通过标记符号来标记要显示的网页中的各个部 ...