In numerical analysisNewton's method (also known as the Newton–Raphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. It is one example of a root-finding algorithm.

{\displaystyle x:f(x)=0\,.}

The Newton–Raphson method in one variable is implemented as follows:

The method starts with a function f defined over the real numbers x, the function's derivative f ′, and an initial guess x0 for a root of the function f. If the function satisfies the assumptions made in the derivation of the formula and the initial guess is close, then a better approximation x1 is

{\displaystyle x_{1}=x_{0}-{\frac {f(x_{0})}{f'(x_{0})}}\,.}

Geometrically, (x1, 0) is the intersection of the x-axis and the tangent of the graph of f at (x0f (x0)).

The process is repeated as

{\displaystyle x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}\,}

until a sufficiently accurate value is reached.

具体实现过程如下:

#include <iostream>
#include<cmath>
using std:: cin;
using std::cout;
using std::endl;
#define EPSILON 1e-6 double f (double x)
{
return 2*pow(x,3)+4*pow(x,2)+3*x-6;
}
double f_prime(double x)
{
return 6*pow(x,2)-8*x+3;
}
double new (double(*f)(double),double(*f_frime)(double))
{
double x=1.5;
while(fabs((*f)(x))>EPSILON)
{
x=x-(*f)(x)/(*f_prime(x));
}
return x;
} int main()
{
cout<<newton(f,f_prime)<<endl;
returen 0;
}

  

C++函数式编程实现牛顿法的更多相关文章

  1. Scala 中的函数式编程基础(一)

    主要来自 Scala 语言发明人 Martin Odersky 教授的 Coursera 课程 <Functional Programming Principles in Scala>. ...

  2. angular2系列教程(六)两种pipe:函数式编程与面向对象编程

    今天,我们要讲的是angualr2的pipe这个知识点. 例子

  3. [学习笔记]JavaScript之函数式编程

    欢迎指导与讨论:) 前言 函数式编程能使我们的代码结构变得简洁,让代码更接近于自然语言,易于理解. 一.减少不必要的函数嵌套代码 (1)当存在函数嵌套时,若内层函数的参数与外层函数的参数一致时,可以这 ...

  4. 函数式编程之柯里化(curry)

    函数式编程curry的概念: 只传递给函数一部分参数来调用函数,然后返回一个函数去处理剩下的参数. var add = function(x) { return function(y) { retur ...

  5. 关于Java8函数式编程你需要了解的几点

    函数式编程与面向对象的设计方法在思路和手段上都各有千秋,在这里,我将简要介绍一下函数式编程与面向对象相比的一些特点和差异. 函数作为一等公民 在理解函数作为一等公民这句话时,让我们先来看一下一种非常常 ...

  6. Haskell 函数式编程快速入门【草】

    什么是函数式编程 用常规编程语言中的函数指针.委托和Lambda表达式等概念来帮助理解(其实函数式编程就是Lambda演算延伸而来的编程范式). 函数式编程中函数可以被非常容易的定义和传递. Hask ...

  7. java1.8函数式编程概念

    有关函数式编程 ·1 函数作为一等公民 特点:将函数作为参数传递给另外一个函数:函数可以作为另外一个函数的返回值 ·2 无副作用 函数的副作用指的是函数在调用过程中,除了给出了返回值外,还修改了函数外 ...

  8. 让JavaScript回归函数式编程的本质

    JavaScript是一门被误会最深的语言,这话一点不假,我们看下它的发展历史. 1995年,Netscape要推向市场,需要一门脚本语言来配套它.是使用一门已有的语言,还是发明一门新的语言,这也不是 ...

  9. python基础-函数式编程

    python基础-函数式编程  高阶函数:map , reduce ,filter,sorted 匿名函数:  lambda  1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层 ...

随机推荐

  1. bzoj 4373 算术天才⑨与等差数列

    4373: 算术天才⑨与等差数列 Time Limit: 10 Sec  Memory Limit: 128 MBhttp://www.lydsy.com/JudgeOnline/problem.ph ...

  2. ajax 操作

    ajax 操作 ajax呢,就是要做到在神不知鬼不觉的情况之下给服务端发送请求. ajax能干啥哩? 这,,,,: 利用AJAX可以做:1.注册时,输入用户名自动检测用户是否已经存在.2.登陆时,提示 ...

  3. 获取apk项目的MD5值和SHA1值

    一些可说可不说的话: * 以前有一个更简单的方法,在as的右边工具栏的 gradle 面板中可以很方便的获取到: * 上次用也是在2年前,时间长了给忘记了,不过我记得我当时写了笔记,这会笔记不在身边, ...

  4. 快速搭建fabric-v1.1.0的chaincode开发环境

    本文参考了fabric官方文档:http://hyperledger-fabric.readthedocs.io/en/latest/peer-chaincode-devmode.html?highl ...

  5. 微信接口(一)创建菜单&自动回复

    刚划拉完微信.做一个笔记这里的数据是写死的,还有一份是通过查询数据库进行自动回复,自定义菜单设置的.不过因为使用到数据库,最好在网站后台吧微信平台开发集成进去.所以代码较多就先不放了.有问题的地方请留 ...

  6. Linux知识积累(8)卸载安装jdk

    java -version yum remove java yum groupremove java java -version tar -zxvf jdk-8u60-linux-x64.tar.gz ...

  7. maven入门(1-2)settings.xml

    一.简介 settings.xml对于maven来说相当于全局性的配置,用于所有的项目, 当Maven运行过程中的各种配置,例如pom.xml,不想绑定到一个固定的project或者要分配给用户时, ...

  8. Python学习之list有序集合

    # coding=utf-8 # list有序集合 classmate = ['Michael', 'Bob', 'Tracy'] print classmate print len(classmat ...

  9. Python之IO模型

    IO模型介绍 为了更好地了解IO模型,我们需要事先回顾下:同步.异步.阻塞.非阻塞 同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞 ...

  10. django Form组件 上传文件

    上传文件 注意:FORM表单提交文件要有一个参数enctype="multipart/form-data" 普通上传: urls: url(r'^f1/',views.f1), u ...