In numerical analysisNewton's method (also known as the Newton–Raphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. It is one example of a root-finding algorithm.

{\displaystyle x:f(x)=0\,.}

The Newton–Raphson method in one variable is implemented as follows:

The method starts with a function f defined over the real numbers x, the function's derivative f ′, and an initial guess x0 for a root of the function f. If the function satisfies the assumptions made in the derivation of the formula and the initial guess is close, then a better approximation x1 is

{\displaystyle x_{1}=x_{0}-{\frac {f(x_{0})}{f'(x_{0})}}\,.}

Geometrically, (x1, 0) is the intersection of the x-axis and the tangent of the graph of f at (x0f (x0)).

The process is repeated as

{\displaystyle x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}\,}

until a sufficiently accurate value is reached.

具体实现过程如下:

#include <iostream>
#include<cmath>
using std:: cin;
using std::cout;
using std::endl;
#define EPSILON 1e-6 double f (double x)
{
return 2*pow(x,3)+4*pow(x,2)+3*x-6;
}
double f_prime(double x)
{
return 6*pow(x,2)-8*x+3;
}
double new (double(*f)(double),double(*f_frime)(double))
{
double x=1.5;
while(fabs((*f)(x))>EPSILON)
{
x=x-(*f)(x)/(*f_prime(x));
}
return x;
} int main()
{
cout<<newton(f,f_prime)<<endl;
returen 0;
}

  

C++函数式编程实现牛顿法的更多相关文章

  1. Scala 中的函数式编程基础(一)

    主要来自 Scala 语言发明人 Martin Odersky 教授的 Coursera 课程 <Functional Programming Principles in Scala>. ...

  2. angular2系列教程(六)两种pipe:函数式编程与面向对象编程

    今天,我们要讲的是angualr2的pipe这个知识点. 例子

  3. [学习笔记]JavaScript之函数式编程

    欢迎指导与讨论:) 前言 函数式编程能使我们的代码结构变得简洁,让代码更接近于自然语言,易于理解. 一.减少不必要的函数嵌套代码 (1)当存在函数嵌套时,若内层函数的参数与外层函数的参数一致时,可以这 ...

  4. 函数式编程之柯里化(curry)

    函数式编程curry的概念: 只传递给函数一部分参数来调用函数,然后返回一个函数去处理剩下的参数. var add = function(x) { return function(y) { retur ...

  5. 关于Java8函数式编程你需要了解的几点

    函数式编程与面向对象的设计方法在思路和手段上都各有千秋,在这里,我将简要介绍一下函数式编程与面向对象相比的一些特点和差异. 函数作为一等公民 在理解函数作为一等公民这句话时,让我们先来看一下一种非常常 ...

  6. Haskell 函数式编程快速入门【草】

    什么是函数式编程 用常规编程语言中的函数指针.委托和Lambda表达式等概念来帮助理解(其实函数式编程就是Lambda演算延伸而来的编程范式). 函数式编程中函数可以被非常容易的定义和传递. Hask ...

  7. java1.8函数式编程概念

    有关函数式编程 ·1 函数作为一等公民 特点:将函数作为参数传递给另外一个函数:函数可以作为另外一个函数的返回值 ·2 无副作用 函数的副作用指的是函数在调用过程中,除了给出了返回值外,还修改了函数外 ...

  8. 让JavaScript回归函数式编程的本质

    JavaScript是一门被误会最深的语言,这话一点不假,我们看下它的发展历史. 1995年,Netscape要推向市场,需要一门脚本语言来配套它.是使用一门已有的语言,还是发明一门新的语言,这也不是 ...

  9. python基础-函数式编程

    python基础-函数式编程  高阶函数:map , reduce ,filter,sorted 匿名函数:  lambda  1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层 ...

随机推荐

  1. 如何书写高效的css样式

    如何书写高效的css样式? 有以下四个关键要素: 1.高效的css 2.可维护的css 3.组件化的css 4.hack-free  css 书写高效的css: 1.使用外联样式替代行间样式或内嵌样式 ...

  2. 一个页面多个HTTP请求 页面卡顿!

    用promise解决 前两天面试的时候 一个面试官问到这样一个问题 这里先说出解决的路径 这几天会更新具体的做法 或者直接参考廖雪峰大神 地址如下: https://www.liaoxuefeng.c ...

  3. EasyUI中, datagrid用loadData方法绑定数据。

    $("#dg").datagrid("loadData", { , " }, { "ck": "1", &qu ...

  4. 美团点餐—listview内部按钮点击事件

    PS:长时间不写博客了,今天来写一下美团的这个点餐界面,今天先写一个加号减号的接口调用,下一篇是整体,有点菜,评价,商家,还有左边的listview和右边的展示项.进入这篇正题,像listview,G ...

  5. Service Worker和HTTP缓存

    很多人,包括我自己,初看Service Worker多一个Cache Storage的时候,就感觉跟HTTP长缓存没什么区别. 例如大家讲的最多的Service Worker能让网页离线使用,但熟悉H ...

  6. Python内置函数(56)——locals

     英文文档: locals() Update and return a dictionary representing the current local symbol table. Free var ...

  7. es6学习笔记--Interator和Generator(以及for-of的用法)

    这几天学习了遍历器和生成器,看着资料学,有点雾里缭绕的感觉,让人忍不住放弃,还好多看了好几遍,怼着资料里的例子让自己学会了Interator和Generator.   Interator,中文简称:遍 ...

  8. Netty事件监听和处理(上)

    陪产假结束了,今天又开始正常上班了,正好赶上米粉节活动,又要忙上一阵了,米粉节活动时间为4.03 - 4.10,有不少优惠,感兴趣的可以关注mi.com或小米商城app. 今天给大家送了福利:小爱音箱 ...

  9. spring6——AOP的编程术语

    面向切面编程作为一种编程思想,允许我们对程序的执行流程及执行结果动态的做出改变,以达到业务逻辑之间的分层管理或者是目标对象方法的增强,spring框架很好的实现了这种编程思想,让我们可以对主业务逻辑和 ...

  10. Opencv出现“_pFirstBlock == pHead”错误的解决方法

    先说结论: opencv链接库使用错误. 1,确认VS工程属性中,opencv的链接库路径和版本正确. VS2013应该使用vc12目录,VS2012对应vc11目录.debug版和release版要 ...