HBase Filter及对应Shell--转
http://www.cnblogs.com/skyl/p/4807793.html
比较运算符 CompareFilter.CompareOp
比较运算符用于定义比较关系,可以有以下几类值供选择:
- EQUAL 相等
- GREATER 大于
- GREATER_OR_EQUAL 大于等于
- LESS 小于
- LESS_OR_EQUAL 小于等于
- NOT_EQUAL 不等于
比较器 ByteArrayComparable
通过比较器可以实现多样化目标匹配效果,比较器有以下子类可以使用:
- BinaryComparator 匹配完整字节数组
- BinaryPrefixComparator 匹配字节数组前缀
- BitComparator 不常用
- NullComparator 不常用
- RegexStringComparator 匹配正则表达式
- SubstringComparator 匹配子字符串
1.多重过滤器--FilterList(Shell不支持)
FilterList代表一个过滤器链,它可以包含一组即将应用于目标数据集的过滤器,过滤器间具有“与”FilterList.Operator.MUST_PASS_ALL 和“或” FilterList.Operator.MUST_PASS_ONE 关系。

- //结合过滤器,获取所有age在15到30之间的行
- private static void scanFilter() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- // And
- FilterList filterList = new FilterList(FilterList.Operator.MUST_PASS_ALL);
- // >=15
- SingleColumnValueFilter filter1 = new SingleColumnValueFilter("info".getBytes(), "age".getBytes(), CompareOp.GREATER_OR_EQUAL, "15".getBytes());
- // =<30
- SingleColumnValueFilter filter2 = new SingleColumnValueFilter("info".getBytes(), "age".getBytes(), CompareOp.LESS_OR_EQUAL, "30".getBytes());
- filterList.addFilter(filter1);
- filterList.addFilter(filter2);
- Scan scan = new Scan();
- // set Filter
- scan.setFilter(filterList);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

2. 列值过滤器--SingleColumnValueFilter
用于测试列值相等(CompareOp.EQUAL ),不等(CompareOp.NOT_EQUAL),或单侧范围 (如CompareOp.GREATER)。构造函数:
2.1.比较的关键字是一个字符数组(Shell不支持?)
SingleColumnValueFilter(byte[] family, byte[] qualifier, CompareFilter.CompareOp compareOp, byte[] value)

- //SingleColumnValueFilter例子
- private static void scanFilter01() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- SingleColumnValueFilter scvf = new SingleColumnValueFilter("info".getBytes(), "age".getBytes(), CompareOp.EQUAL, "18".getBytes());
- Scan scan = new Scan();
- scan.setFilter(scvf);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

2.2.比较的关键字是一个比较器ByteArrayComparable
SingleColumnValueFilter(byte[] family, byte[] qualifier, CompareFilter.CompareOp compareOp, ByteArrayComparable comparator)

- //SingleColumnValueFilter例子2 -- RegexStringComparator
- private static void scanFilter02() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
//值比较的正则表达式 -- RegexStringComparator- //匹配info:age值以"4"结尾
- RegexStringComparator comparator = new RegexStringComparator(".4");
- //第四个参数不一样
- SingleColumnValueFilter scvf = new SingleColumnValueFilter("info".getBytes(), "age".getBytes(), CompareOp.EQUAL, comparator);
- Scan scan = new Scan();
- scan.setFilter(scvf);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

- hbase(main):032:0> scan 'users',{FILTER=>"SingleColumnValueFilter('info','age',=,'regexstring:.4')"}
- ROW COLUMN+CELL
- xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
- xiaoming01 column=address:country, timestamp=1442000228945, value=\xE4\xB8\xAD\xE5\x9B\xBD
- xiaoming01 column=info:age, timestamp=1441998917568, value=24
- xiaoming02 column=info:age, timestamp=1441998917594, value=24
- xiaoming03 column=info:age, timestamp=1441998919607, value=24
- 3 row(s) in 0.0130 seconds



- //SingleColumnValueFilter例子2 -- SubstringComparator
- private static void scanFilter03() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //检测一个子串是否存在于值中(大小写不敏感) -- SubstringComparator
- //过滤age值中包含'4'的RowKey
- SubstringComparator comparator = new SubstringComparator("4");
- //第四个参数不一样
- SingleColumnValueFilter scvf = new SingleColumnValueFilter("info".getBytes(), "age".getBytes(), CompareOp.EQUAL, comparator);
- Scan scan = new Scan();
- scan.setFilter(scvf);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

- hbase(main):033:0> scan 'users',{FILTER=>"SingleColumnValueFilter('info','age',=,'substring:4')"}
- ROW COLUMN+CELL
- xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
- xiaoming01 column=address:country, timestamp=1442000228945, value=\xE4\xB8\xAD\xE5\x9B\xBD
- xiaoming01 column=info:age, timestamp=1441998917568, value=24
- xiaoming02 column=info:age, timestamp=1441998917594, value=24
- xiaoming03 column=info:age, timestamp=1441998919607, value=24
- 3 row(s) in 0.0180 seconds


3.列名过滤器
由于HBase采用键值对保存内部数据,列名过滤器过滤一行的列名(ColumnFamily:Qualifiers)是否存在 , 对应前节所述列值的情况。
3.1.基于Columun Family列族过滤数据的FamilyFilter
FamilyFilter(CompareFilter.CompareOp familyCompareOp, ByteArrayComparable familyComparator)
注意:
1.如果希望查找的是一个已知的列族,则使用 scan.addFamily(family); 比使用过滤器效率更高.
2.由于目前HBase对多列族支持不完善,所以该过滤器目前用途不大.

- //基于列族过滤数据的FamilyFilter
- private static void scanFilter04() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //过滤 = 'address'的列族
- //FamilyFilter familyFilter = new FamilyFilter(CompareOp.EQUAL, new BinaryComparator("address".getBytes()));
- //过滤以'add'开头的列族
- FamilyFilter familyFilter = new FamilyFilter(CompareOp.EQUAL, new BinaryPrefixComparator("add".getBytes()));
- Scan scan = new Scan();
- scan.setFilter(familyFilter);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

- hbase(main):021:0> scan 'users',{FILTER=>"FamilyFilter(=,'binaryprefix:add')"}
- ROW COLUMN+CELL
- xiaoming column=address:city, timestamp=1441997498965, value=hangzhou
- xiaoming column=address:contry, timestamp=1441997498911, value=china
- xiaoming column=address:province, timestamp=1441997498939, value=zhejiang
- xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
- xiaoming01 column=address:country, timestamp=1442000228945, value=\xE4\xB8\xAD\xE5\x9B\xBD
- zhangyifei column=address:city, timestamp=1441997499108, value=jieyang
- zhangyifei column=address:contry, timestamp=1441997499077, value=china
- zhangyifei column=address:province, timestamp=1441997499093, value=guangdong
- zhangyifei column=address:town, timestamp=1441997500711, value=xianqiao
- 3 row(s) in 0.0400 seconds


3.2.基于Qualifier列名过滤数据的QualifierFilter
QualifierFilter(CompareFilter.CompareOp op, ByteArrayComparable qualifierComparator)
说明:该过滤器应该比FamilyFilter更常用!

- //基于Qualifier(列名)过滤数据的QualifierFilter
- private static void scanFilter05() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //过滤列名 = 'age'所有RowKey
- //QualifierFilter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new BinaryComparator("age".getBytes()));
- //过滤列名 以'age'开头 所有RowKey(包含age)
- //QualifierFilter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new BinaryPrefixComparator("age".getBytes()));
- //过滤列名 包含'age' 所有RowKey(包含age)
- //QualifierFilter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new SubstringComparator("age"));
- //过滤列名 符合'.ge'正则表达式 所有RowKey
- QualifierFilter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new RegexStringComparator(".ge"));
- Scan scan = new Scan();
- scan.setFilter(qualifierFilter);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

- hbase(main):020:0> scan 'users',{FILTER=>"QualifierFilter(=,'regexstring:.ge')"}
- ROW COLUMN+CELL
- xiaoming column=info:age, timestamp=1441997971945, value=38
- xiaoming01 column=info:age, timestamp=1441998917568, value=24
- xiaoming02 column=info:age, timestamp=1441998917594, value=24
- xiaoming03 column=info:age, timestamp=1441998919607, value=24
- zhangyifei column=info:age, timestamp=1442247255446, value=18
- 5 row(s) in 0.0460 seconds


3.3.基于列名前缀过滤数据的ColumnPrefixFilter(该功能用QualifierFilter也能实现)
ColumnPrefixFilter(byte[] prefix)
注意:一个列名是可以出现在多个列族中的,该过滤器将返回所有列族中匹配的列。

- //ColumnPrefixFilter例子
- private static void scanFilter06() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //匹配 以'ag'开头的所有的列
- ColumnPrefixFilter columnPrefixFilter = new ColumnPrefixFilter("ag".getBytes());
- Scan scan = new Scan();
- scan.setFilter(columnPrefixFilter);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

- hbase(main):018:0> scan 'users',{FILTER=>"ColumnPrefixFilter('ag')"}
- ROW COLUMN+CELL
- xiaoming column=info:age, timestamp=1441997971945, value=38
- xiaoming01 column=info:age, timestamp=1441998917568, value=24
- xiaoming02 column=info:age, timestamp=1441998917594, value=24
- xiaoming03 column=info:age, timestamp=1441998919607, value=24
- zhangyifei column=info:age, timestamp=1442247255446, value=18
- 5 row(s) in 0.0280 seconds


3.4.基于多个列名前缀过滤数据的MultipleColumnPrefixFilter
MultipleColumnPrefixFilter 和 ColumnPrefixFilter 行为差不多,但可以指定多个前缀。

- //MultipleColumnPrefixFilter例子
- private static void scanFilter07() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //匹配 以'a'或者'c'开头 所有的列{二维数组}
- byte[][] prefixes =new byte[][]{"a".getBytes(), "c".getBytes()};
- MultipleColumnPrefixFilter multipleColumnPrefixFilter = new MultipleColumnPrefixFilter(prefixes );
- Scan scan = new Scan();
- scan.setFilter(multipleColumnPrefixFilter);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

- hbase(main):017:0> scan 'users',{FILTER=>"MultipleColumnPrefixFilter('a','c')"}
- ROW COLUMN+CELL
- xiaoming column=address:city, timestamp=1441997498965, value=hangzhou
- xiaoming column=address:contry, timestamp=1441997498911, value=china
- xiaoming column=info:age, timestamp=1441997971945, value=38
- xiaoming column=info:company, timestamp=1441997498889, value=alibaba
- xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
- xiaoming01 column=address:country, timestamp=1442000228945, value=\xE4\xB8\xAD\xE5\x9B\xBD
- xiaoming01 column=info:age, timestamp=1441998917568, value=24
- xiaoming02 column=info:age, timestamp=1441998917594, value=24
- xiaoming03 column=info:age, timestamp=1441998919607, value=24
- zhangyifei column=address:city, timestamp=1441997499108, value=jieyang
- zhangyifei column=address:contry, timestamp=1441997499077, value=china
- zhangyifei column=info:age, timestamp=1442247255446, value=18
- zhangyifei column=info:company, timestamp=1441997499039, value=alibaba
- 5 row(s) in 0.0430 seconds


3.5.基于列范围(不是行范围)过滤数据ColumnRangeFilter
- 可用于获得一个范围的列,例如,如果你的一行中有百万个列,但是你只希望查看列名从bbbb到dddd的范围
- 该方法从 HBase 0.92 版本开始引入
- 一个列名是可以出现在多个列族中的,该过滤器将返回所有列族中匹配的列
构造函数:
ColumnRangeFilter(byte[] minColumn, boolean minColumnInclusive, byte[] maxColumn, boolean maxColumnInclusive)
参数解释:
- minColumn - 列范围的最小值,如果为空,则没有下限
- minColumnInclusive - 列范围是否包含minColumn
- maxColumn - 列范围最大值,如果为空,则没有上限
- maxColumnInclusive - 列范围是否包含maxColumn

- //ColumnRangeFilter例子
- private static void scanFilter08() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //匹配 以'a'开头到以'c'开头(不包含c) 所有的列
- ColumnRangeFilter columnRangeFilter = new ColumnRangeFilter("a".getBytes(), true, "c".getBytes(), false);
- Scan scan = new Scan();
- scan.setFilter(columnRangeFilter);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

- hbase(main):016:0> scan 'users',{FILTER=>"ColumnRangeFilter('a',true,'c',false)"}
- ROW COLUMN+CELL
- xiaoming column=info:age, timestamp=1441997971945, value=38
- xiaoming column=info:birthday, timestamp=1441997498851, value=1987-06-17
- xiaoming01 column=info:age, timestamp=1441998917568, value=24
- xiaoming02 column=info:age, timestamp=1441998917594, value=24
- xiaoming03 column=info:age, timestamp=1441998919607, value=24
- zhangyifei column=info:age, timestamp=1442247255446, value=18
- zhangyifei column=info:birthday, timestamp=1441997498990, value=1987-4-17
- 5 row(s) in 0.0340 seconds


4.RowKey
当需要根据行键特征查找一个范围的行数据时,使用Scan的startRow和stopRow会更高效,但是,startRow和stopRow只能匹配行键的开始字符,而不能匹配中间包含的字符。当需要针对行键进行更复杂的过滤时,可以使用RowFilter。
构造函数:RowFilter(CompareFilter.CompareOp rowCompareOp, ByteArrayComparable rowComparator)

- //RowFilter例子
- private static void scanFilter09() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //匹配 行键包含'01' 所有的行
- RowFilter rowFilter = new RowFilter(CompareOp.EQUAL, new SubstringComparator("01"));
- Scan scan = new Scan();
- scan.setFilter(rowFilter);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

- hbase(main):013:0> scan 'users',{FILTER=>"RowFilter(=,'substring:01')"}
- ROW COLUMN+CELL
- xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
- xiaoming01 column=address:country, timestamp=1442000228945, value=\xE4\xB8\xAD\xE5\x9B\xBD
- xiaoming01 column=info:age, timestamp=1441998917568, value=24
- 1 row(s) in 0.0190 seconds


5.PageFilter(Shell不支持?)
指定页面行数,返回对应行数的结果集。
需要注意的是,该过滤器并不能保证返回的结果行数小于等于指定的页面行数,因为过滤器是分别作用到各个region server的,它只能保证当前region返回的结果行数不超过指定页面行数。
构造函数:PageFilter(long pageSize)

- //PageFilter例子
- private static void scanFilter10() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //从RowKey为 "xiaoming" 开始,取3行(包含xiaoming)
- PageFilter pageFilter = new PageFilter(3L);
- Scan scan = new Scan();
- scan.setStartRow("xiaoming".getBytes());
- scan.setFilter(pageFilter);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

注意:由于该过滤器并不能保证返回的结果行数小于等于指定的页面行数,所以更好的返回指定行数的办法是ResultScanner.next(int nbRows),即:

- //上面Demo的改动版
private static void scanFilter11() throws IOException,- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //从RowKey为 "xiaoming" 开始,取3行(包含xiaoming)
- //PageFilter pageFilter = new PageFilter(3L);
- Scan scan = new Scan();
- scan.setStartRow("xiaoming".getBytes());
- //scan.setFilter(pageFilter);
- ResultScanner rs = ht.getScanner(scan);
- //指定返回3行数据
- for(Result result : rs.next(3)){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

6.SkipFilter(Shell不支持)
根据整行中的每个列来做过滤,只要存在一列不满足条件,整行都被过滤掉。
构造函数:SkipFilter(Filter filter)
例如,如果一行中的所有列代表的是不同物品的重量,则真实场景下这些数值都必须大于零,我们希望将那些包含任意列值为0的行都过滤掉。在这个情况下,我们结合ValueFilter和SkipFilter共同实现该目的:
scan.setFilter(new SkipFilter(new ValueFilter(CompareOp.NOT_EQUAL,new BinaryComparator(Bytes.toBytes(0))));

- //SkipFilter例子
- private static void scanFilter12() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //跳过列值中包含"24"的所有列
- SkipFilter skipFilter = new SkipFilter(new ValueFilter(CompareOp.NOT_EQUAL, new BinaryComparator("24".getBytes())));
- Scan scan = new Scan();
- scan.setFilter(skipFilter);
- ResultScanner rs = ht.getScanner(scan);
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- }
- }
- ht.close();
- }

7.Utility--FirstKeyOnlyFilter
该过滤器仅仅返回每一行中第一个cell的值,可以用于高效的执行行数统计操作。估计实战意义不大。
构造函数:public FirstKeyOnlyFilter()

- //FirstKeyOnlyFilter例子
- private static void scanFilter12() throws IOException,
- UnsupportedEncodingException {
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
- conf.set("hbase.zookeeper.quorum", "ncst");
- HTable ht = new HTable(conf, "users");
- //返回每一行中的第一个cell的值
- FirstKeyOnlyFilter firstKeyOnlyFilter = new FirstKeyOnlyFilter();
- Scan scan = new Scan();
- scan.setFilter(firstKeyOnlyFilter);
- ResultScanner rs = ht.getScanner(scan);
- int i = 0;
- for(Result result : rs){
- for(Cell cell : result.rawCells()){
- System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
- +new String(CellUtil.cloneFamily(cell))+"\t"
- +new String(CellUtil.cloneQualifier(cell))+"\t"
- +new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
- +cell.getTimestamp());
- i++;
- }
- }
- //输出总的行数
- System.out.println(i);
- ht.close();
- }

- hbase(main):009:0> scan 'users',{FILTER=>'FirstKeyOnlyFilter()'}
- ROW COLUMN+CELL
- xiaoming column=address:city, timestamp=1441997498965, value=hangzhou
- xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
- xiaoming02 column=info:age, timestamp=1441998917594, value=24
- xiaoming03 column=info:age, timestamp=1441998919607, value=24
- zhangyifei column=address:city, timestamp=1441997499108, value=jieyang
- 5 row(s) in 0.0240 seconds


HBase Filter及对应Shell--转的更多相关文章
- HBase Filter及对应Shell
比较运算符 CompareFilter.CompareOp比较运算符用于定义比较关系,可以有以下几类值供选择: EQUAL 相等 GREATER 大于 GREATER_OR_EQUAL 大于等于 LE ...
- HBase filter shell操作
创建表 create 'test1', 'lf', 'sf' lf: column family of LONG values (binary value) -- sf: column family ...
- hbase的常用的shell命令&hbase的DDL操作&hbase的DML操作
前言 笔者在分类中的hbase栏目之前已经分享了hbase的安装以及一些常用的shell命令的使用,这里不仅仅重新复习一下shell命令,还会介绍hbase的DDL以及DML的相关操作. hbase的 ...
- hbase各种遍历查询shell语句 包含过滤组合条件
import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.Li ...
- HBase Filter 过滤器之RowFilter详解
前言:本文详细介绍了HBase RowFilter过滤器Java&Shell API的使用,并贴出了相关示例代码以供参考.RowFilter 基于行键进行过滤,在工作中涉及到需要通过HBase ...
- HBase Filter 过滤器之FamilyFilter详解
前言:本文详细介绍了 HBase FamilyFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.FamilyFilter 基于列族进行过滤,在工作中涉及 ...
- HBase Filter 过滤器之QualifierFilter详解
前言:本文详细介绍了 HBase QualifierFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.QualifierFilter 基于列名进行过滤, ...
- HBase Filter 过滤器之 ValueFilter 详解
前言:本文详细介绍了 HBase ValueFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.ValueFilter 基于列值进行过滤,在工作中涉及到需 ...
- 一个自定义 HBase Filter -“通过RowKeys来高性能获取数据”
摘要: 大家在使用HBase和Solr搭建系统中经常遇到的一个问题就是:“我通过SOLR得到了RowKeys后,该怎样去HBase上取数据”.使用现有的Filter性能差劲,网上也没有现成的自定义Fi ...
- 生成HFile文件后倒入数据出现Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hbase.filter.Filter
数据导入的时候出现: at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclar ...
随机推荐
- Quoit Design(最近点对+分治)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- Mysql隔离级别,锁与MVCC
关键词:事务,ACID,隔离级别,MVCC,共享锁,排它锁 阅读本文前请先阅读http://hedengcheng.com/?p=771 http://www.hollischuang.com/arc ...
- [国嵌攻略][179][OpenSSL加密系统]
未加密传输的安全弊端 如果在网络传输中没有加密,就是以明文传输.传输的数据可以被抓包软件直接截获,并能读取里面的数据. 加密基本原理 1.对称加密 2.非对称加密 2.1.公钥私钥 公钥和私密要配对. ...
- 用于 C♯ 图像识别的轮廓分析技术
用于 C♯ 图像识别的轮廓分析技术 供稿:Conmajia 标题:Contour Analysis for Image Recognition in C# 作者:Pavel Torgashov 此中文 ...
- Spark算子--union、intersection、subtract
转载请标明出处http://www.cnblogs.com/haozhengfei/p/252bcc1d1ab30c430d347279d5827615.html union.intersection ...
- java if与for循环的题
//打印一个4*5的空心长方形 /* for (int i = 0; i < 5;i++ ) { if (i == 0 | i == 4) { ...
- bat复制文件夹下所有文件到另一个目录
一个需求,网上了半天都是错了,所以记一下吧,方便你我. copy是文件拷贝,文件夹拷贝需要用到xcopy @echo off::当前盘符set curPath=%cd%set digPath =&qu ...
- js数组操作记录
一 .splice() 方法向/从数组中添加/删除项目,然后返回被删除的项目. arrayObject.splice(index,howmany,item1,.....,itemX) 参数 描述 in ...
- SQL语句order by两个字段同时排序。
ORDER BY 后可加2个字段,用英文逗号隔开.理解:对两个字段都排序,并不是之排序其中的一个字段: f1用升序, f2降序,sql该这样写 ORDERBY f1, f2 DESC 也可以这样 ...
- Jupyter notebook入门
Jupyter notebook入门 [TOC] Jupyter notebook 是一种 Web 应用,能让用户将说明文本.数学方程.代码和可视化内容全部组合到一个易于共享的文档中. Jupyter ...