BZOJ4870: [Shoi2017]组合数问题
4870: [Shoi2017]组合数问题
Description
.jpg)
Input
Output
Sample Input
Sample Output
HINT
Source
dp+矩阵快速幂
/**************************************************************
Problem: 4870
User: white_hat_hacker
Language: C++
Result: Accepted
Time:680 ms
Memory:820 kb
****************************************************************/ #include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define ll long long
#define MAXN 52
using namespace std;
ll n,p,k,r;
struct Mat{
ll a[MAXN][MAXN];
Mat(){
memset(a,,sizeof(a));
}
void operator *= (const Mat &B){
ll ret[MAXN][MAXN];
memset(ret,,sizeof(ret));
for(int i=;i<k;i++){
for(int j=;j<k;j++){
for(int q=;q<k;q++){
ret[i][j]=(ret[i][j]+a[i][q]*B.a[q][j])%p;
}
}
}
memcpy(a,ret,sizeof(a));
}
};
int main()
{
Mat A,B;
scanf("%lld%lld%lld%lld",&n,&p,&k,&r);
ll b=n*k;
for(int i=;i<k;i++){
A.a[i][i]++,A.a[i][(i-+k)%k]++;
B.a[i][i]=;
}
while(b){
if(b&){
B*=A;
}
b>>=;
A*=A;
}
printf("%lld\n",B.a[r][]);
return ;
}
BZOJ4870: [Shoi2017]组合数问题的更多相关文章
- [BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MB Description Input 第一行有四个整数 n, p, k, r ...
- BZOJ4870 [Shoi2017]组合数问题 【组合数 + 矩乘】
题目链接 BZOJ4870 题解 \[ans = \sum\limits_{i = 0}^{\infty}{nk \choose ik + r} \pmod p\] 发现实际是求 \[ans = \s ...
- BZOJ4870:[SHOI2017]组合数问题(组合数学,矩阵乘法)
Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 ...
- bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)
为了1A我居然写了个暴力对拍... 那个式子本质上是求nk个数里选j个数,且j%k==r的方案数. 所以把组合数的递推式写出来f[i][j]=f[i-1][j]+f[i-1][(j-1+k)%k].. ...
- 【BZOJ4870】[Shoi2017]组合数问题 动态规划(矩阵乘法)
[BZOJ4870][Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < ...
- bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]
4870: [Shoi2017]组合数问题 题意:求 \[ \sum_{i=0}^{n-1} \binom{nk}{ik+r} \mod p \] \(n \le 10^9, 0\le r < ...
- BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法
BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...
- 【BZOJ4870】组合数问题(动态规划,矩阵快速幂)
[BZOJ4870]组合数问题(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 显然直接算是没法做的.但是要求的东西的和就是从\(nk\)个物品中选出模\(k\)意义下恰好\(r\)个物品的方案数 ...
- BZOJ4870:[SHOI2017]组合数问题——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=4870 https://www.luogu.org/problemnew/show/P3746 看网上 ...
随机推荐
- django模型——数据库(二)
模型--数据库(二) 实验简介 模型的一些基本操作,save方法用于把对象写入到数据库,objects是模型的管理器,可以使用它的delete.filter.all.order_by和update等函 ...
- java 二维码解析和生成
package ykxw.web.qrcode.utils; import java.awt.Color; import java.awt.Graphics2D; import java.awt.im ...
- nyoj 复杂度
复杂度 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 for(i=1;i<=n;i++) for(j=i+1;j<=n;j++) for(k=j+1;k ...
- 学习less
什么是less?LESSCSS是一种动态样式语言,属于CSS预处理语言的一种,它使用类似CSS的语法,为CSS的赋予了动态语言的特性,如变量.继承.运算.函数等,更方便CSS的编写和维护. less哪 ...
- C#中委托。
委托(delegate):是一个类型.其实winform中控件的事件也是特殊的委托类型. 如: 自定义委托:自定义委托在winform中的用法. 当要在子线程中更新UI时,必须通过委托来实现. pri ...
- DOM中的事件对象(event)
在触发DOM上的某个事件时,会产生一个事件对象event,这个对象中包含着所有与事件相关的信息. 包括导致事件的元素.事件的类型以及其他与特定事件相关的信息. 例如:鼠标操作导致的事件对象中,会包含鼠 ...
- python全栈开发-常用模块的一些应用
一.random模块详解 1.概述 首先我们看到这个单词是随机的意思,他在python中的主要用于一些随机数,或者需要写一些随机数的代码,下面我们就来整理他的一些用法 2.常用方法 1. random ...
- Python3 re模块(正则表达式)
一:什么是正则? 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则. (在Python中)它内嵌在Python中,并通过r ...
- 详解Ajax请求(三)——jQuery对Ajax的实现及serialize()函数对于表单域控件参数提交的使用技巧
原生的Ajax对于异步请求的实现并不好用,特别是不同的浏览器对于Ajax的实现并不完全相同,这就意味着你使用原生的Ajax做异步请求要兼顾浏览器的兼容性问题,对于java程序员来讲这是比较头疼的事情, ...
- 深入浅出Lua虚拟机
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 作者:郑小辉 | 腾讯 游戏客户端开发高级工程师 写在前面:本文所有的文字都是我手工一个一个敲的,以及本文后面分享的Demo代码都是我一行一 ...