斯坦福CS224n作业一

softmax

作业要求如下:

解析:题目要求我们证明\(softmax\)函数具有常数不变性。

解答:对于\(x+c\)的每一维来说,有如下等式成立:
\[softmax(x+c)_{i}=\frac{e^{x_{i}+c}}{\sum_{j}e^{x_{j}+c}}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}}*e^{c})}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}})*e^{c}}=\frac{e^{x_{i}}}{\sum_{j}e^{x_{j}}}=softmax(x)_{i}\]
则可知\(softmax(x)=softmax(x+c)\)成立

Neural Network Basics

求解sigmoid函数梯度

作业要求如下:

解析:本题要求我们计算\(\sigma(x)\)函数的梯度,并用\(\sigma(x)\)表示结果
解答:\[\frac{\partial{(\sigma(x)})}{\partial{x}}=\frac{\partial{(\frac{1}{1+e^{-x}}})}{\partial{x}}\]
设\(a=1+e^{-x}\),应用链式法则可以得到:
\[\frac{\partial{(\sigma(x)})}{\partial{x}}=\frac{\partial{(\frac{1}{a}})}{\partial{x}}=-(\frac{1}{a})^{2}*\frac{\partial{a}}{\partial{x}}=-(\frac{1}{a})^{2}*e^{-x}*(-1)=\frac{e^{-x}}{(1+e^{-x})^{2}}\]
用\(\sigma(x)\)可以表示为\(\sigma(x)-\sigma(x)^{2}\)

softmax + 交叉熵的梯度推导

作业要求如下:

解析:本题给定了实际值\(y\),预测值\(\hat{y}\),以及softmax的输入向量\(\theta\),要求我们求解\(CE(y,\hat{y})\)对\(\theta\)的梯度
解答:
对于每个\(\theta_{i}\)来说,\(CE(y,\hat{y})\)对\(\theta_{i}\)的梯度如下所示:

可知,对于所有的i来说,\(CE(y,\hat{y})\)对\(\theta_{i}\)的梯度为\(\hat{y}-y\)。

三层神经网络的梯度推导

作业要求如下:

解析:本题要求推导\(CE(y,\hat{y})\)对输入\(x\)的梯度。
解答:

斯坦福CS224n课程作业的更多相关文章

  1. 斯坦福NLP课程 | 第1讲 - NLP介绍与词向量初步

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  2. 斯坦福NLP课程 | 第2讲 - 词向量进阶

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  3. 斯坦福NLP课程 | 第11讲 - NLP中的卷积神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  4. 斯坦福NLP课程 | 第12讲 - NLP子词模型

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  5. 斯坦福NLP课程 | 第15讲 - NLP文本生成任务

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  6. 斯坦福NLP课程 | 第18讲 - 句法分析与树形递归神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  7. 关于Coursera上的斯坦福机器学习课程的编程作业提交问题

    学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: 'Submission failed: unexpected error: urlread: Peer ...

  8. 斯坦福大学cs231n作业参考(中文版)

    cs231n2016冬季课程作业完成,在原先的基础上进行了翻译和中文注释,同时增加了16之后版本的部分新作业文件,已经全部跑通,需要的欢迎自取. 斯坦福大学的 CS231n(全称:面向视觉识别的卷积神 ...

  9. Web编程基础--HTML、CSS、JavaScript 学习之课程作业“仿360极速浏览器新标签页”

    Web编程基础--HTML.CSS.JavaScript 学习之课程作业"仿360极速浏览器新标签页" 背景: 作为一个中专网站建设出身,之前总是做静态的HTML+CSS+DIV没 ...

随机推荐

  1. java面试题,附个人理解答案

    一,面向对象的特征:1.抽象 包括数据抽象跟行为抽象,将对象共同的特征取出形成一个类2.继承 被继承类为基类/超类,继承类为子类/派生类3.封装 多次使用道德数据或方法,封装成类,方便多次重复调用4. ...

  2. Ocelot中文文档-路由

    Ocelot的主要功能是接管进入的http请求并把它们转发给下游服务.目前是以另一个http请求的形式(将来可能是任何传输机制). Ocelot将路由一个请求到另一个请求描述为ReRoute.为了在O ...

  3. Servlet总结二(文件路径)

    Servlet总结二(文件路径) 前言 前面我们说过ServletContext表示的是web容器中的上下文,下面我们也是用到ServletContext中的方法读取文件 读取WebRoot文件下的文 ...

  4. 分享一下 常用的转换方法(例如:数字转金钱,文本与html互转等)

    public sealed class SAFCFormater { /// <summary> /// 文本格式到HTML /// </summary> /// <pa ...

  5. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  6. 详解CSS选择器、优先级与匹配原理【转】

    作为一个Web开发者,掌握必要的前台技术也是很重要的,特别是在遇到一些实际问题的时候.这里给大家列举一个例子: 给一个p标签增加一个类(class),可是执行后该class中的有些属性并没有起作用.通 ...

  7. Caused by: android.view.InflateException: Binary XML file line #2: Error inflating class android.sup

    解决:找不到资源文件: 系统会根据分辨率来选择加载不同drawable下文件夹的资源,如果只在一个文件下放了资源文件,不同的分辨率设备的会报错.

  8. Slim 文档-First Application 翻译

    最近刚好在用Slim框架,看文档的时候,中文文档中缺了这一篇没有翻译,于是我就把它翻译过来了.本人英语水平有限,如有错误请告知. 如果你在寻找创建一款非常简单的 Slim 应用程序的流程,来这里算是找 ...

  9. springboot+redis实现分布式session共享

    官方文档,它是spring session项目的redis相关的一个子文档:https://docs.spring.io/spring-session/docs/2.0.0.BUILD-SNAPSHO ...

  10. EXCEL解析之终极方法WorkbookFactory

    Selenium做自动化测试当然不能避免和Excel打交道. 由于Excel版本的关系,文件扩展名分xls和xlsx, 以往的经验都是使用HSSFWorkbook和XSSFWorkbook来分别处理. ...