斯坦福CS224n作业一

softmax

作业要求如下:

解析:题目要求我们证明\(softmax\)函数具有常数不变性。

解答:对于\(x+c\)的每一维来说,有如下等式成立:
\[softmax(x+c)_{i}=\frac{e^{x_{i}+c}}{\sum_{j}e^{x_{j}+c}}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}}*e^{c})}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}})*e^{c}}=\frac{e^{x_{i}}}{\sum_{j}e^{x_{j}}}=softmax(x)_{i}\]
则可知\(softmax(x)=softmax(x+c)\)成立

Neural Network Basics

求解sigmoid函数梯度

作业要求如下:

解析:本题要求我们计算\(\sigma(x)\)函数的梯度,并用\(\sigma(x)\)表示结果
解答:\[\frac{\partial{(\sigma(x)})}{\partial{x}}=\frac{\partial{(\frac{1}{1+e^{-x}}})}{\partial{x}}\]
设\(a=1+e^{-x}\),应用链式法则可以得到:
\[\frac{\partial{(\sigma(x)})}{\partial{x}}=\frac{\partial{(\frac{1}{a}})}{\partial{x}}=-(\frac{1}{a})^{2}*\frac{\partial{a}}{\partial{x}}=-(\frac{1}{a})^{2}*e^{-x}*(-1)=\frac{e^{-x}}{(1+e^{-x})^{2}}\]
用\(\sigma(x)\)可以表示为\(\sigma(x)-\sigma(x)^{2}\)

softmax + 交叉熵的梯度推导

作业要求如下:

解析:本题给定了实际值\(y\),预测值\(\hat{y}\),以及softmax的输入向量\(\theta\),要求我们求解\(CE(y,\hat{y})\)对\(\theta\)的梯度
解答:
对于每个\(\theta_{i}\)来说,\(CE(y,\hat{y})\)对\(\theta_{i}\)的梯度如下所示:

可知,对于所有的i来说,\(CE(y,\hat{y})\)对\(\theta_{i}\)的梯度为\(\hat{y}-y\)。

三层神经网络的梯度推导

作业要求如下:

解析:本题要求推导\(CE(y,\hat{y})\)对输入\(x\)的梯度。
解答:

斯坦福CS224n课程作业的更多相关文章

  1. 斯坦福NLP课程 | 第1讲 - NLP介绍与词向量初步

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  2. 斯坦福NLP课程 | 第2讲 - 词向量进阶

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  3. 斯坦福NLP课程 | 第11讲 - NLP中的卷积神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  4. 斯坦福NLP课程 | 第12讲 - NLP子词模型

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  5. 斯坦福NLP课程 | 第15讲 - NLP文本生成任务

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  6. 斯坦福NLP课程 | 第18讲 - 句法分析与树形递归神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  7. 关于Coursera上的斯坦福机器学习课程的编程作业提交问题

    学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: 'Submission failed: unexpected error: urlread: Peer ...

  8. 斯坦福大学cs231n作业参考(中文版)

    cs231n2016冬季课程作业完成,在原先的基础上进行了翻译和中文注释,同时增加了16之后版本的部分新作业文件,已经全部跑通,需要的欢迎自取. 斯坦福大学的 CS231n(全称:面向视觉识别的卷积神 ...

  9. Web编程基础--HTML、CSS、JavaScript 学习之课程作业“仿360极速浏览器新标签页”

    Web编程基础--HTML.CSS.JavaScript 学习之课程作业"仿360极速浏览器新标签页" 背景: 作为一个中专网站建设出身,之前总是做静态的HTML+CSS+DIV没 ...

随机推荐

  1. Java获取当日的起始时间,结束时间,现在时间,是否在时间段中。

    当日的起始时间 public static Date getTodayStartTime() { Calendar todayStart = Calendar.getInstance(); today ...

  2. Rafy 领域实体框架简介

    按照最新的功能,更新了最新版的<Rafy 领域实体框架的介绍>,内容如下: 本文包含以下章节: 简介 特点 优势 简介 Rafy 领域实体框架是一个轻量级 ORM 框架. 与一般的 ORM ...

  3. 如何使用Sencha touch 构建基于Cordova的安卓项目

     项目构建篇 1.生成sencha touch 项目 新建目录,在命令行进入该目录,sencha -sdk sdk-path generate app appName appPath 2.命令行中进入 ...

  4. 在Web中获取MAC地址

    很多时候都很难琢磨客户在想什么,也许是自己业务经验不足,也许是客户要显示出他在软件方面也非常的专业.记得以前听过一个故事,说一个富人想娶个媳妇,然后他比较钟意的有三个女人,然后就想从三个女人中选一个, ...

  5. File,FileInfo,FileStream,StreamReader的区别与用法

    概括的说,File,FileInfo,FileStream是用于文件 I/O 的类,StreamReader是用于从流读取和写入流的类,使用之前都需using System.IO. 先定义一个TXT文 ...

  6. Python_驻留机制

    #coding=utf-8 #coding:utf-8 #- * -coding:utf-8 - * - '''以上为注明字符串的编码格式''' #驻留机制 '''Python支持短字符串驻留机制,对 ...

  7. github routine

    1. 从官方库fork 自己的分支库后,git clone到local. 2. local的remotes/origin默认是自己的分支库.可以添加remotes/upstream指向官方库. 3. ...

  8. Struts标签库详解【3】

    struts2标签库详解 要在jsp中使用Struts2的标志,先要指明标志的引入.通过jsp的代码的顶部加入以下的代码: <%@taglib prefix="s" uri= ...

  9. 使用Python分析ELF文件优化Flash和Sram空间的案例

    1. 背景 Zephyr项目Flash和Ram空间比较紧张,有着非常强烈的优化需求. 优化的前提是量化标的,那么如何量化Flash和Ram的使用量呢? 在量化之后,首先要对量化结果进行分析,然后采取措 ...

  10. spring security oauth2

    https://connect.qq.com/manage.html#/ http://wiki.connect.qq.com/%E7%BD%91%E7%AB%99%E5%BA%94%E7%94%A8 ...