接上一篇:http://www.cnblogs.com/denny402/p/7027954.html

7. 夹角余弦(Cosine)

也可以叫余弦相似度。 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。
(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

(2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦
       类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

  即:

       余弦取值范围为[-1,1]。求得两个向量的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征这两个向量的相似性。夹角越小,趋近于0度,余弦值越接近于1,它们的方向更加吻合,则越相似。当两个向量的方向完全相反夹角余弦取最小值-1。当余弦值为0时,两向量正交,夹角为90度。因此可以看出,余弦相似度与向量的幅值无关,只与向量的方向相关。

import numpy as np
x=np.random.random(10)
y=np.random.random(10) #方法一:根据公式求解
d1=np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y)) #方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=1-pdist(X,'cosine')

两个向量完全相等时,余弦值为1,如下的代码计算出来的d=1。

d=1-pdist([x,x],'cosine')

8. 皮尔逊相关系数(Pearson correlation)

(1) 皮尔逊相关系数的定义

前面提到的余弦相似度只与向量方向有关,但它会受到向量的平移影响,在夹角余弦公式中如果将 x 平移到 x+1, 余弦值就会改变。怎样才能实现平移不变性?这就要用到皮尔逊相关系数(Pearson correlation),有时候也直接叫相关系数

如果将夹角余弦公式写成:

表示向量x和向量y之间的夹角余弦,则皮尔逊相关系数则可表示为:

皮尔逊相关系数具有平移不变性和尺度不变性,计算出了两个向量(维度)的相关性。

在python中的实现:

import numpy as np
x=np.random.random(10)
y=np.random.random(10) #方法一:根据公式求解
x_=x-np.mean(x)
y_=y-np.mean(y)
d1=np.dot(x_,y_)/(np.linalg.norm(x_)*np.linalg.norm(y_)) #方法二:根据numpy库求解
X=np.vstack([x,y])
d2=np.corrcoef(X)[0][1]

相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。

9. 汉明距离(Hamming distance)
(1)汉明距离的定义
       两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。
       应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

在python中的实现:

import numpy as np
from scipy.spatial.distance import pdist
x=np.random.random(10)>0.5
y=np.random.random(10)>0.5 x=np.asarray(x,np.int32)
y=np.asarray(y,np.int32) #方法一:根据公式求解
d1=np.mean(x!=y) #方法二:根据scipy库求解
X=np.vstack([x,y])
d2=pdist(X,'hamming')

10. 杰卡德相似系数(Jaccard similarity coefficient)
(1) 杰卡德相似系数
       两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

  杰卡德相似系数是衡量两个集合的相似度一种指标。
(2) 杰卡德距离
       与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:

  杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。
(3) 杰卡德相似系数与杰卡德距离的应用
       可将杰卡德相似系数用在衡量样本的相似度上。
  样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

在python中的实现:

import numpy as np
from scipy.spatial.distance import pdist
x=np.random.random(10)>0.5
y=np.random.random(10)>0.5 x=np.asarray(x,np.int32)
y=np.asarray(y,np.int32) #方法一:根据公式求解
up=np.double(np.bitwise_and((x != y),np.bitwise_or(x != 0, y != 0)).sum())
down=np.double(np.bitwise_or(x != 0, y != 0).sum())
d1=(up/down) #方法二:根据scipy库求解
X=np.vstack([x,y])
d2=pdist(X,'jaccard')

11. 布雷柯蒂斯距离(Bray Curtis Distance)

Bray Curtis距离主要用于生态学和环境科学,计算坐标之间的距离。该距离取值在[0,1]之间。它也可以用来计算样本之间的差异。

样本数据:

计算:

在python中的实现:

import numpy as np
from scipy.spatial.distance import pdist
x=np.array([11,0,7,8,0])
y=np.array([24,37,5,18,1]) #方法一:根据公式求解
up=np.sum(np.abs(y-x))
down=np.sum(x)+np.sum(y)
d1=(up/down) #方法二:根据scipy库求解
X=np.vstack([x,y])
d2=pdist(X,'braycurtis')

距离度量以及python实现(二)的更多相关文章

  1. 概率分布之间的距离度量以及python实现(四)

    1.f 散度(f-divergence) KL-divergence 的坏处在于它是无界的.事实上KL-divergence 属于更广泛的 f-divergence 中的一种. 如果P和Q被定义成空间 ...

  2. 距离度量以及python实现(一)

    1. 欧氏距离(Euclidean Distance)        欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式. (1)二维平面上两点a(x1,y1)与b(x2,y2)间 ...

  3. 概率分布之间的距离度量以及python实现(三)

    概率分布之间的距离,顾名思义,度量两组样本分布之间的距离 . 1.卡方检验 统计学上的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson ...

  4. 概率分布之间的距离度量以及python实现

    1. 欧氏距离(Euclidean Distance)       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧 ...

  5. ML 07、机器学习中的距离度量

    机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时, ...

  6. 机器学习方法、距离度量、K_Means

    特征向量 1.特征向量:以人为例,每个元素可能就对应这人的某些方面,这就是特征,例如:身高.年龄.性别.国际....2.特征工程:目的就是将现有数据中可作为信号的特征与那些仅是噪声的特征区分开来:当数 ...

  7. <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...

  8. 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...

  9. 使用 Python 生成二维码

    在“一带一路”国际合作高峰论坛举行期间, 20 国青年投票选出中国的“新四大发明”:高铁.扫码支付.共享单车和网购.其中扫码支付指手机通过扫描二维码跳转到支付页面,再进行付款.这种新的支付方式,造就二 ...

随机推荐

  1. Interface Development

  2. java float double精度为什么会丢失?浅谈java的浮点数精度问题 【转】

    由于对float或double 的使用不当,可能会出现精度丢失的问题.问题大概情况可以通过如下代码理解: public class FloatDoubleTest { public static vo ...

  3. Scrapy爬虫框架第三讲(linux环境)

    下面我们来学习下Spider的具体使用: 我们已上节的百度阅读爬虫为例来进行分析: 1 # -*- coding: utf-8 -*- 2 import scrapy 3 from scrapy.li ...

  4. MySQL SHOW TABLE 输出的每列详细介绍

    Name: 表名 Engine: 表的存储引擎(旧版本中,该值为Type) Row_format: 行的格式.对于MyISAM表,可选的值为Dynamic.Fixed或者Copressed. Dyna ...

  5. bootstrap-table 列宽问题解决

    <th style="width:120px" data-field="Cel1"><div class="th-inner &qu ...

  6. 网络Socket编程及实例

    1 TCP和UDP介绍 在介绍TCP和UDP之前,有必要先介绍下网络体系结构的各个层次. 1.1  网络体系结构 协议:控制网络中信息的发送和接收.定义了通信实体之间交换报文的格式和次序,以及在报文传 ...

  7. 并发库应用之十 & 多线程数据交换Exchanger应用

    申明:用大白话来说就是用于实现两个人之间的数据交换,每个人在完成一定的事务后想与对方交换数据,第一个先拿出数据的人会一直等待第二个人,直到第二个人拿着数据到来时,才能彼此交换数据. java.util ...

  8. 关于Linux虚拟化技术KVM的科普

    虚拟化技术应用越来越广泛,虚拟化技术需求越来越强劲.KVM.XEN.Docker等比较热门,尤其是KVM技术越来越受欢迎. 基于此背景,了解一下KVM+QEMU就有点必要了. 从网上收集了一些资料进行 ...

  9. java的系统时间,怎么计算从现在到凌晨还剩下多少时间?

    Apache commons-lang3 long milliSecondsLeftToday = 86400000 - DateUtils.getFragmentInMilliseconds(Cal ...

  10. 居中 html css

    <div id="main" style="width:800px;height: 600px;margin:0 auto"> <!-- 这里 ...