上一道例题

我们来介绍第二类Stirling数

定义

第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为

或者

。和第一类Stirling数不同的是,集合内是不考虑次序的,而圆排列是有序的。常常用于解决组合数学中几类放球模型。描述为:将n个不同的球放入m个无差别的盒子中,要求盒子非空,有几种方案?

第二类Stirling数要求盒子是无区别的,所以可以得到其方案数公式:  
              

递推式

第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下:
(1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合。方案数

(2)如果n个元素已经构成了m个集合,将第n+1个元素插入到任意一个集合。方案数 m*S(n,m) 。
综合两种情况得:

应用举例

第二类Stirling数主要是用于解决组合数学中的几类放球模型。主要是针对于球之前有区别的放球模型:
(1)n个不同的球,放入m个无区别的盒子,不允许盒子为空。
方案数:

。这个跟第二类Stirling数的定义一致。

(2)n个不同的球,放入m个有区别的盒子,不允许盒子为空。
方案数:

。因盒子有区别,乘上盒子的排列即可。

(3)n个不同的球,放入m个无区别的盒子,允许盒子为空。
方案数:

。枚举非空盒的数目便可。

(4)n个不同的球,放入m个有区别的盒子,允许盒子为空。
①方案数:

。同样可以枚举非空盒的数目,注意到盒子有区别,乘上一个排列系数。

②既然允许盒子为空,且盒子间有区别,那么对于每个球有m中选择,每个球相互独立。有方案数:

上述式子可以应用于第二类Stirling数通项的求解。

通项公式

 
 
 

[总结] 第二类Stirling数的更多相关文章

  1. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

  2. 第二类Stirling数

    第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, ...

  3. [BZOJ5093]图的价值(NTT+第二类Stirling数)

    5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 250  Solved: 130[Submit][Sta ...

  4. LightOJ 1326 – Race 第二类Stirling数/

    简单的模板题. 题意:问n匹马出现的不同排名数. 题解:可以使用DP,本质上还是第二类Stirling数(隔板法) #include <stdio.h> #include <iost ...

  5. HDU 2643 Rank:第二类Stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2643 题意: 有n个个选手参赛,问排名有多少种情况(可以并列). 题解: 简化问题: 将n个不同的元素 ...

  6. 第二类Stirling数初探 By cellur925

    上午noi.ac崩崩崩了,栽在组合数学上,虽说最后在辰哥&Chemist的指导下A掉了此题,也发现自己组合数学太弱了qwq. 在luogu上找题,结果找到了一个第二类斯特林数的题(还是双倍经验 ...

  7. 自然数幂和——第一类Stirling数和第二类Stirling数

    第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...

  8. (转) [组合数学] 第一类,第二类Stirling数,Bell数

    一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的 ...

  9. 第一类和第二类Stirling数

    做了老是忘…… 实际问题: 找维基百科.百度百科…… 第一类Stirling数 n个元素构成m个圆排列 S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m) 初始 S(0,0)=1 S(n ...

随机推荐

  1. 机器学习中应用到的各种距离介绍(附上Matlab代码)

    转载于博客:各种距离 在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的"距离"(Distance). ...

  2. OkHttp拆解之调用流程图

  3. AM335X的USB otg网卡(RNDIS /Ethernet Gadget)调试

    重新编译内核(2.6.29)       2.6.29内核        Device Drivers ---> USB support --->   USB Gadget Support ...

  4. Scheme change not implemented

    1.错误描述 2.错误原因 由于在改变Java代码中的方法或运行代码出现,导致Tomcat编译的代码不能替换工作空间的代码,即不能及时同步,出现错误 3.解决办法 (1)关闭Tomcat,clean一 ...

  5. Parallel中分区器Partitioner的简单使用

    Partitioner.Create(1,10,4).GetDynamicPartitions() 为长度为10的序列创建分区,每个分区至多4个元素,分区方法及结果:Partitioner.Creat ...

  6. WINDOWS的错误代码对应的故障

    WINDOWS的错误代码对应的故障 0000 操作已成功完成. 0001 错误的函数. 0002 系统找不到指定的文件. 0003 系统找不到指定的路径. 0004 系统无法打开文件. 0005 拒绝 ...

  7. TypeError: Error #1006: value 不是函数。

    1.错误原因 TypeError: Error #1006: value 不是函数. at BasicChart/dataFunc()[E:\Flash Builder\Map\src\BasicCh ...

  8. Django学习-11-请求相关信息

    requests对象是由类创建的 from django.core.handlers.wsgi import WSGIRequest    --> 类 request.environ中封装了请求 ...

  9. 异常-----freemarker.template.TemplateException: The only legal comparisons are between two numbers, two strings, or two dates

    1.错误描述 六月 26, 2014 10:44:49 下午 freemarker.log.JDK14LoggerFactory$JDK14Logger error 严重: Template proc ...

  10. Java8 日期/时间(Date Time)使用简介

    特别说明: LocalDateTime 为日期时间的计算提供了很大的方便, 在构造对象/运算/toString等方便都非常便利. 3个常用的类: java.time.LocalDateTime; ja ...