上一道例题

我们来介绍第二类Stirling数

定义

第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为

或者

。和第一类Stirling数不同的是,集合内是不考虑次序的,而圆排列是有序的。常常用于解决组合数学中几类放球模型。描述为:将n个不同的球放入m个无差别的盒子中,要求盒子非空,有几种方案?

第二类Stirling数要求盒子是无区别的,所以可以得到其方案数公式:  
              

递推式

第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下:
(1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合。方案数

(2)如果n个元素已经构成了m个集合,将第n+1个元素插入到任意一个集合。方案数 m*S(n,m) 。
综合两种情况得:

应用举例

第二类Stirling数主要是用于解决组合数学中的几类放球模型。主要是针对于球之前有区别的放球模型:
(1)n个不同的球,放入m个无区别的盒子,不允许盒子为空。
方案数:

。这个跟第二类Stirling数的定义一致。

(2)n个不同的球,放入m个有区别的盒子,不允许盒子为空。
方案数:

。因盒子有区别,乘上盒子的排列即可。

(3)n个不同的球,放入m个无区别的盒子,允许盒子为空。
方案数:

。枚举非空盒的数目便可。

(4)n个不同的球,放入m个有区别的盒子,允许盒子为空。
①方案数:

。同样可以枚举非空盒的数目,注意到盒子有区别,乘上一个排列系数。

②既然允许盒子为空,且盒子间有区别,那么对于每个球有m中选择,每个球相互独立。有方案数:

上述式子可以应用于第二类Stirling数通项的求解。

通项公式

 
 
 

[总结] 第二类Stirling数的更多相关文章

  1. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

  2. 第二类Stirling数

    第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, ...

  3. [BZOJ5093]图的价值(NTT+第二类Stirling数)

    5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 250  Solved: 130[Submit][Sta ...

  4. LightOJ 1326 – Race 第二类Stirling数/

    简单的模板题. 题意:问n匹马出现的不同排名数. 题解:可以使用DP,本质上还是第二类Stirling数(隔板法) #include <stdio.h> #include <iost ...

  5. HDU 2643 Rank:第二类Stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2643 题意: 有n个个选手参赛,问排名有多少种情况(可以并列). 题解: 简化问题: 将n个不同的元素 ...

  6. 第二类Stirling数初探 By cellur925

    上午noi.ac崩崩崩了,栽在组合数学上,虽说最后在辰哥&Chemist的指导下A掉了此题,也发现自己组合数学太弱了qwq. 在luogu上找题,结果找到了一个第二类斯特林数的题(还是双倍经验 ...

  7. 自然数幂和——第一类Stirling数和第二类Stirling数

    第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...

  8. (转) [组合数学] 第一类,第二类Stirling数,Bell数

    一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的 ...

  9. 第一类和第二类Stirling数

    做了老是忘…… 实际问题: 找维基百科.百度百科…… 第一类Stirling数 n个元素构成m个圆排列 S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m) 初始 S(0,0)=1 S(n ...

随机推荐

  1. CEPH RGW 设置 user default_placement为ssd-placement,优化100KB-200KB小文件性能,使用户创建的bucket对象放置到 SSD设备的Pool上。

    sudo radosgw-admin metadata get user:tuanzi > user.md.json vi user.md.json #to add ssd-placement ...

  2. C#中windows服务安装方法

    关于windows服务的编写方法,参考:http://www.cnblogs.com/sorex/archive/2012/05/16/2502001.html 我这里就补充一下安装方法. 1.首先打 ...

  3. R︱shiny实现交互式界面布置与搭建(案例讲解+学习笔记)

    要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 看了看往期的博客,这个话题竟然是第 ...

  4. Oracle SQL Developer中SQL语句格式化快捷键

    Oracle SQL Developer中SQL语句格式化快捷键 格式化SQL语句:Ctrl+F7

  5. Nginx 原理解析和配置摘要

    前言 Nginx 作为高性能的 http 服务器,知名度不必多言,相似产品中无出其右.本篇随笔记录我认为较为重要的原理和配置. 1. 原理解析 1.1 结构 以上是 Nginx 的结构图,其包含一个 ...

  6. Django学习-13-simple_tag使用

    一些HTML方法                {{item.event_start | date:"Y-m-d H:i:s"}}                     {{bi ...

  7. Modbus总结

    1.概念 ①Coil和Register Modbus中定义的两种数据类型.Coil是位(bit)变量:Register是整型(Word,即16-bit)变量. ②Slave和Master与Server ...

  8. 指针数组与带参main函数

    (一)指针数组 指针数组就是每一个元素存放一个地址,相当于一个指针变量.如:int *p[4]指针数组比较适合用来指向若干字符串,使得处理字符串更加灵活.例如,现在要将若干字符串按字母顺序由小到大输出 ...

  9. python urllib和urllib3包使用

    urllib包 urllib是一个包含几个模块来处理请求的库.分别是: urllib.request 发送http请求 urllib.error 处理请求过程中,出现的异常. urllib.parse ...

  10. 简述“类(class)”,“类库(class library)”,“包(package)”,“jar文件”这四个概念间的关系

    (1)类(class)实际上是对某种类型的对象定义变量和方法的原型,它表示对现实生活中的一类具有共同特征的事物的抽象. (2)为了更好地组织类,java提供了包机制.包(package)是类的容器,用 ...