链接:https://ac.nowcoder.com/acm/contest/549/J
来源:牛客网
题目描述
小A最近开始研究数论题了,这一次他随手写出来一个式子,∑ni=1∑mj=1gcd(i,j)2∑i=1n∑j=1mgcd(i,j)2,但是他发现他并不太会计算这个式子,你可以告诉他这个结果吗,答案可能会比较大,请模上1000000007。
输入描述:
一行两个正整数n,m一行两个正整数n,m
输出描述:
一行一个整数表示输出结果一行一个整数表示输出结果
 
输入:
2 2
输出:
7
1=<n,m<=1e6
解题思路:这题应该算是一题莫比乌斯反演的套路题了,感觉莫比乌斯真的好难啊,学了好久感觉也没懂,这题算是它的一个简单应用。
具体可以参考博客:https://blog.sengxian.com/algorithms/mobius-inversion-formula
莫比乌斯反演经典套路:
现在有个积性函数f(n),设n<m,则:

于是原来的式子就变成了求f∗μ了,再用上整数分块就可以快速搞定了。

自己推演了一遍:

代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<set>
#include<cmath>
#include<list>
#include<deque>
#include<cstdlib>
#include<bitset>
#include<stack>
#include<map>
#include<cstdio>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
const double eps=1e-;
const int maxn=;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
const int mod=1e9+;
const int dir[][]={{,},{-,},{,},{,-}};
const int N=1e6+;
ll n,m,prime[N],mu[N],tot;
void getMu(){
for(int i=;i<=1e6+;i++) prime[i]=;
mu[]=;
for(int i=;i<=1e6+;i++){
if(prime[i]){
prime[++tot]=i;
mu[i]=-;
}
for(int j=;j<=tot&&prime[j]*i<=1e6+;j++){
prime[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}else mu[i*prime[j]]=-mu[i];
}
}
}
int main(){
cin>>n>>m;
getMu();
ll ans=;
for(ll i=;i<=min(n,m);i++){
ll tmp=;
for(ll j=i;j<=min(n,m);j+=i){
tmp=(tmp+mu[j/i]*(n/j)*(m/j))%mod;
}
ans=(ans+tmp*i*i%mod)%mod;
}
cout<<ans<<endl;
return ;
}

整除分块优化:

#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn=1e6+;
const int mod=1e9+;
ll n,m,prime[maxn],mu[maxn],sum[maxn],tot,ans;
void getMobius(int N){
for(int i=;i<=N;i++)prime[i]=;
mu[]=;
for(int i=;i<=N;i++){
if(prime[i]){
prime[tot++]=i;
mu[i]=-;
}
for(int j=;j<tot&&i*prime[j]<=N;j++){
prime[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
}
ll solve(ll a,ll b){
ll res=;
for(int l=,r;l<=min(a,b);l=r+){
r=min(a/(a/l),b/(b/l));
res=(res+(sum[r]-sum[l-])%mod*(a/l)%mod*(b/l)%mod)%mod;
}
return res;
}
int main(){
scanf("%lld%lld",&n,&m);
if(n>m) swap(n,m);
getMobius(1e6);
sum[]=;
for(int i=;i<=1e6;i++) sum[i]=sum[i-]+mu[i];
for(ll l=,r;l<=n;l=r+){
r=min(n/(n/l),m/(m/l));
ll dd=(r*(r+)*(*r+)/-(l-)*l*(*l-)/)%mod;
ans=(ans+dd*solve(n/l,m/l)%mod)%mod;
}
printf("%lld\n",ans);
return ;
}

牛客小白月赛13-J小A的数学题 (莫比乌斯反演)的更多相关文章

  1. 牛客小白月赛30 J.小游戏 (DP)

    题意:给你一组数,每次可以选择拿走第\(i\)个数,得到\(a[i]\)的分数,然后对于分数值为\(a[i]-1\)和\(a[i]+1\)的值就会变得不可取,问能得到的最大分数是多少. 题解:\(a[ ...

  2. 牛客小白月赛13 小A买彩票 (记忆化搜索)

    链接:https://ac.nowcoder.com/acm/contest/549/C来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...

  3. 牛客小白月赛13 小A的回文串(Manacher)

    链接:https://ac.nowcoder.com/acm/contest/549/B来源:牛客网 题目描述 小A非常喜欢回文串,当然我们都知道回文串这种情况是非常特殊的.所以小A只想知道给定的一个 ...

  4. 牛客小白月赛13 小A的最短路(lca+RMQ)

    链接:https://ac.nowcoder.com/acm/contest/549/F来源:牛客网 题目描述 小A这次来到一个景区去旅游,景区里面有N个景点,景点之间有N-1条路径.小A从当前的一个 ...

  5. 牛客小白月赛13 小A的柱状图(单调栈)

    链接:https://ac.nowcoder.com/acm/contest/549/H来源:牛客网 题目描述 柱状图是有一些宽度相等的矩形下端对齐以后横向排列的图形,但是小A的柱状图却不是一个规范的 ...

  6. 牛客网 牛客小白月赛1 J.おみやげをまらいました

    J.おみやげをまらいました   链接:https://www.nowcoder.com/acm/contest/85/J来源:牛客网     随便写写.   代码: 1 #include<ios ...

  7. 牛客小白月赛12 J 月月查华华的手机 (序列自动机模板题)

    链接:https://ac.nowcoder.com/acm/contest/392/J 来源:牛客网 题目描述 月月和华华一起去吃饭了.期间华华有事出去了一会儿,没有带手机.月月出于人类最单纯的好奇 ...

  8. 牛客小白月赛2 J 美 【构造】

    链接:https://www.nowcoder.com/acm/contest/86/J来源:牛客网 题目描述 最后,Sεlιнα(Selina) 开始了选美大赛. 一如既往地,Sεlιнα 想最大化 ...

  9. 牛客小白月赛6 J 洋灰三角 数学

    链接:https://www.nowcoder.com/acm/contest/136/J来源:牛客网 题目描述     洋灰是一种建筑材料,常用来筑桥搭建高层建筑,又称,水泥.混凝土.     WH ...

  10. 牛客小白月赛4 J 强迫症 思维

    链接:https://www.nowcoder.com/acm/contest/134/J来源:牛客网 题目描述 铁子最近犯上了强迫症,他总是想要把一个序列里的元素变得两两不同,而他每次可以执行一个这 ...

随机推荐

  1. Arrays工具、二维数组以及LeetCode练习题

    1 Arrays PS:Arrays位于java.util包下 int binarySearch(type[] a, type key); 使用二分法查询 key 元素在 a 数组中的索引,如果数组不 ...

  2. Java并发——synchronized关键字

    前言: 只要涉及到Java并发那么我们就会考虑线程安全,实际上能够实现线程安全的方法很多,今天先介绍一下synchronized关键字,主要从使用,原理介绍 一.synchronized的使用方法 1 ...

  3. 洛谷P3366 【模板】最小生成树(Boruvka算法)

    题意 题目链接 Sol 自己yy着写了一下Boruvka算法. 算法思想很简单,就是每次贪心的用两个联通块之间最小的边去合并. 复杂度\(O(n \log n)\),然鹅没有Kruskal跑的快,但是 ...

  4. Python网络爬虫-信息标记

    信息标记的三种形式: XML(扩展标记语言) JSON(js中面向对象的信息表达形式,由类型的(string)键值对组成) "name":"北京理工大学" YA ...

  5. 基于GitLab的Code Review教程

    一.前言 1.本文主要内容 GitLab Code Review机制说明 Git Workflow 与 Git Code Review Workflow GitLab Code Review 配置说明 ...

  6. RuntimeException和Exception区别

    1.java将所有的错误封装为一个对象,其根本父类为Throwable, Throwable有两个子类:Error和Exception. 2.Error是Throwable 的子类,用于指示合理的应用 ...

  7. LeetCode算法题-Shortest Completing Word(Java实现)

    这是悦乐书的第309次更新,第330篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第178题(顺位题号是748).从给定的字典单词中查找最小长度单词,其中包含字符串lic ...

  8. JAVA进阶23

    1.统计文件夹大小 package cn.demo02; import java.io.File; /** * @Classname DirTest03 * @Description TODO * @ ...

  9. 项目总结-timerTask的使用

    关于使用timerTask来进行定时任务的研究 业务说明:每天的0点执行一次 调用说明:com.hzmd.itest.db.ItestDbUtil中的startPermitTimer()方法进行最终的 ...

  10. ansible copy 模块详解

    ansible 模块 copy one.概述 copy 模块的作用就是拷贝文件,它与之前介绍过的 fetch 模块类似,不过,fetch 模块是从远程主机中拉取文件到 ansible 管理主机,而 c ...