英文使用手册原汁原味,一手资料。

NAME
       timerfd_create, timerfd_settime, timerfd_gettime - timers that notify via file descriptors

SYNOPSIS

  1. #include <sys/timerfd.h>
  2.  
  3. int timerfd_create(int clockid, int flags);
  4.  
  5. int timerfd_settime(int fd, int flags,
  6. const struct itimerspec *new_value,
  7. struct itimerspec *old_value);
  8.  
  9. int timerfd_gettime(int fd, struct itimerspec *curr_value);

DESCRIPTION
       These  system  calls  create  and  operate  on  a timer that delivers timer expiration notifications(过期通知) via a file
       descriptor.  They provide an alternative to the use of setitimer(2) or timer_create(2), with the advantage that
       the file descriptor may be monitored by select(2), poll(2), and epoll(7).

The  use  of  these  three  system  calls  is  analogous  to  the use of timer_create(2), timer_settime(2), and
       timer_gettime(2).  (There is no analog of timer_getoverrun(2), since that functionality is provided by read(2),
       as described below.)

   timerfd_create()

  1. int timerfd_create(int clockid, int flags);//创建一个时间对象,并返回一个指向该事件对象的文件描述符

timerfd_create()  creates  a  new  timer  object, and returns a file descriptor that refers to that timer.  The
       clockid argument specifies the clock that is used to mark the  progress  of  the  timer,  and  must  be  either
       CLOCK_REALTIME  or CLOCK_MONOTONIC.

   1、CLOCK_REALTIME is a settable system-wide clock.

   2、CLOCK_MONOTONIC is a nonsettable clock that is not affected by discontinuous changes in the system clock

  (e.g., manual changes to  system time).  The current value of each of these clocks can be retrieved using clock_gettime(2).

Starting  with  Linux  2.6.27,  the  following  values  may  be bitwise ORed in flags to change the behavior of
       timerfd_create():

TFD_NONBLOCK  Set the O_NONBLOCK file status flag on the new open file  description.   Using  this  flag  saves
                     extra calls to fcntl(2) to achieve the same result.

TFD_CLOEXEC   Set  the  close-on-exec (FD_CLOEXEC) flag on the new file descriptor.  See the description of the
                     O_CLOEXEC flag in open(2) for reasons why this may be useful.

In Linux versions up to and including 2.6.26, flags must be specified as zero.

  timerfd_settime()

  1. int timerfd_settime(int fd, int flags,
  2. const struct itimerspec *new_value,
  3. struct itimerspec *old_value);

  timerfd_settime() arms (starts) or disarms (stops) the timer referred to by the file descriptor fd.

The new_value argument specifies the initial expiration and interval for the timer.  The itimer structure  used
       for this argument contains two fields, each of which is in turn a structure of type timespec:

  1. struct timespec {
  2. time_t tv_sec; /* Seconds */
  3. long tv_nsec; /* Nanoseconds 十亿分之一秒*/
  4. };
  5.  
  6. struct itimerspec {
  7. struct timespec it_interval; /* Interval for periodic timer 周期*/
  8. struct timespec it_value; /* Initial expiration 初始过期时间*/
  9. };

  new_value.it_value  specifies  the initial expiration of the timer, in seconds and nanoseconds.

   1、Setting either field of new_value.it_value to a nonzero(非零) value arms the timer. (设置一个为非零表示启动定时器)

   2、Setting both fields  of  new_value.it_value  to zero disarms the timer.(设置两个为零表示关闭定时器)

3、Setting  one  or  both  fields  of new_value.it_interval to nonzero values specifies the period, in seconds and
       nanoseconds,  for  repeated  timer  expirations  after   the   initial   expiration.   (至少一个非零,表示设定周期,定时器周期性工作)

   4、If   both   fields   of new_value.it_interval are zero, the timer expires just once, at the time specified by new_value.it_value.
  (如果new_value.it_interval的两个时间域都为零,则表示定时器只工作一次,即到达初始过期时间后就停止工作,非周期性)

The  flags argument is either 0, to start a relative timer(相对时间) (new_value.it_value specifies a time relative to the
       current value  of  the  clock  specified  by  clockid),  or  TFD_TIMER_ABSTIME,  to  start  an  absolute  timer(绝对时间)
       (new_value.it_value  specifies  an  absolute  time  for the clock specified by clockid; that is, the timer will
       expire when the value of that clock reaches the value specified in new_value.it_value).

If the old_value argument is not NULL, then the itimerspec structure that it points to is used  to  return  the
       setting of the timer that was current at the time of the call; see the description of timerfd_gettime() follow‐
       ing.

timerfd_gettime()

  1. int timerfd_gettime(int fd, struct itimerspec *curr_value);

timerfd_gettime() returns, in curr_value, an itimerspec structure that contains  the  current  setting  of  the
       timer referred to by the file descriptor fd.

The  it_value field returns the amount of time until the timer will next expire.  If both fields of this struc‐
       ture are zero, then the timer is currently disarmed.  This field always contains a relative  value,  regardless
       of whether the TFD_TIMER_ABSTIME flag was specified when setting the timer.

The  it_interval  field returns the interval of the timer.  If both fields of this structure are zero, then the
       timer is set to expire just once, at the time specified by curr_value.it_value.

Operating on a timer file descriptor
       The file descriptor returned by timerfd_create() supports the following operations:

read(2)
              If the timer has already expired one  or  more  times  since  its  settings  were  last  modified  using
              timerfd_settime(),  or  since  the  last successful read(2), then the buffer given to read(2) returns an
              unsigned 8-byte integer (uint64_t) containing the  number  of  expirations  that  have  occurred.   (The
              returned value is in host byte order—that is, the native byte order for integers on the host machine.)

If  no timer expirations have occurred at the time of the read(2), then the call either blocks until the
              next timer expiration, or fails with the error EAGAIN if the file descriptor has been  made  nonblocking
              (via the use of the fcntl(2) F_SETFL operation to set the O_NONBLOCK flag).

A read(2) will fail with the error EINVAL if the size of the supplied buffer is less than 8 bytes.

poll(2), select(2) (and similar)
              The file descriptor is readable (the select(2) readfds argument; the poll(2) POLLIN flag) if one or more
              timer expirations have occurred.

The file descriptor also supports the other file-descriptor multiplexing APIs: pselect(2), ppoll(2), and
              epoll(7).

close(2)
              When  the  file descriptor is no longer required it should be closed.  When all file descriptors associ‐
              ated with the same timer object have been closed, the timer is disarmed and its resources are  freed  by
              the kernel.

fork(2) semantics
       After  a  fork(2),  the  child  inherits  a  copy of the file descriptor created by timerfd_create().  The file
       descriptor refers to the same underlying timer object as the corresponding file descriptor in the  parent,  and
       read(2)s in the child will return information about expirations of the timer.

execve(2) semantics
       A  file  descriptor  created by timerfd_create() is preserved across execve(2), and continues to generate timer
       expirations if the timer was armed.

RETURN VALUE
       On success, timerfd_create() returns a new file descriptor.  On error, -1 is returned and errno is set to indi‐
       cate the error.

timerfd_settime() and timerfd_gettime() return 0 on success; on error they return -1, and set errno to indicate
       the error.

ERRORS
       timerfd_create() can fail with the following errors:

EINVAL The clockid argument is neither CLOCK_MONOTONIC nor CLOCK_REALTIME;

EINVAL flags is invalid; or, in Linux 2.6.26 or earlier, flags is nonzero.

EMFILE The per-process limit of open file descriptors has been reached.

ENFILE The system-wide limit on the total number of open files has been reached.

ENODEV Could not mount (internal) anonymous inode device.

ENOMEM There was insufficient kernel memory to create the timer.

timerfd_settime() and timerfd_gettime() can fail with the following errors:

EBADF  fd is not a valid file descriptor.

EFAULT new_value, old_value, or curr_value is not valid a pointer.

EINVAL fd is not a valid timerfd file descriptor.

timerfd_settime() can also fail with the following errors:

EINVAL new_value is not properly initialized (one of the tv_nsec falls outside the range zero to 999,999,999).

EINVAL flags is invalid.

VERSIONS
       These system calls are available on Linux since kernel 2.6.25.  Library support is provided by glibc since ver‐
       sion 2.8.

CONFORMING TO
       These system calls are Linux-specific.

BUGS
       Currently, timerfd_create() supports fewer types of clock IDs than timer_create(2).

EXAMPLE
       The following program creates a timer and then monitors its progress.  The program accepts up to three command-
       line arguments.  The first argument specifies the number of seconds for the initial expiration  of  the  timer.
       The  second argument specifies the interval for the timer, in seconds.  The third argument specifies the number
       of times the program should allow the timer to expire before terminating.  The second  and  third  command-line
       arguments are optional.

The following shell session demonstrates the use of the program:

  1. $ a.out
  2. 0.000: timer started
  3. 3.000: read: ; total=
  4. 4.000: read: ; total=
  5. ^Z # type control-Z to suspend the program
  6. []+ Stopped ./timerfd3_demo
  7. $ fg # Resume execution after a few seconds
  8. a.out
  9. 9.660: read: ; total=
  10. 10.000: read: ; total=
  11. 11.000: read: ; total=
  12. ^C # type control-C to suspend the program

Program source

  1. #include <sys/timerfd.h>
  2. #include <time.h>
  3. #include <unistd.h>
  4. #include <stdlib.h>
  5. #include <stdio.h>
  6. #include <stdint.h> /* Definition of uint64_t */
  7.  
  8. #define handle_error(msg) \
  9. do { perror(msg); exit(EXIT_FAILURE); } while ()
  10.  
  11. static void
  12. print_elapsed_time(void)
  13. {
  14. static struct timespec start;
  15. struct timespec curr;
  16. static int first_call = ;
  17. int secs, nsecs;
  18.  
  19. if (first_call) {
  20. first_call = ;
  21. if (clock_gettime(CLOCK_MONOTONIC, &start) == -)
  22. handle_error("clock_gettime");
  23. }
  24.  
  25. if (clock_gettime(CLOCK_MONOTONIC, &curr) == -)
  26. handle_error("clock_gettime");
  27.  
  28. secs = curr.tv_sec - start.tv_sec;
  29. nsecs = curr.tv_nsec - start.tv_nsec;
  30. if (nsecs < ) {
  31. secs--;
  32. nsecs += ;
  33. }
  34. printf("%d.%03d: ", secs, (nsecs + ) / );
  35. }
  36.  
  37. int
  38. main(int argc, char *argv[])
  39. {
  40. struct itimerspec new_value;
  41. int max_exp, fd;
  42. struct timespec now;
  43. uint64_t exp, tot_exp;
  44. ssize_t s;
  45.  
  46. if ((argc != ) && (argc != )) {
  47. fprintf(stderr, "%s init-secs [interval-secs max-exp]\n",
  48. argv[]);
  49. exit(EXIT_FAILURE);
  50. }
  51.  
  52. if (clock_gettime(CLOCK_REALTIME, &now) == -)
  53. handle_error("clock_gettime");
  54.  
  55. /* Create a CLOCK_REALTIME absolute timer with initial
  56. expiration and interval as specified in command line */
  57.  
  58. new_value.it_value.tv_sec = now.tv_sec + atoi(argv[]);
  59. new_value.it_value.tv_nsec = now.tv_nsec;
  60. if (argc == ) {
  61. new_value.it_interval.tv_sec = ;
  62. max_exp = ;
  63. } else {
  64. new_value.it_interval.tv_sec = atoi(argv[]);
  65. max_exp = atoi(argv[]);
  66. }
  67. new_value.it_interval.tv_nsec = ;
  68.  
  69. fd = timerfd_create(CLOCK_REALTIME, );
  70. if (fd == -)
  71. handle_error("timerfd_create");
  72.  
  73. if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == -)
  74. handle_error("timerfd_settime");
  75.  
  76. print_elapsed_time();
  77. printf("timer started\n");
  78.  
  79. for (tot_exp = ; tot_exp < max_exp;) {
  80. s = read(fd, &exp, sizeof(uint64_t));
  81. if (s != sizeof(uint64_t))
  82. handle_error("read");
  83.  
  84. tot_exp += exp;
  85. print_elapsed_time();
  86. printf("read: %llu; total=%llu\n",
  87. (unsigned long long) exp,
  88. (unsigned long long) tot_exp);
  89. }
  90.  
  91. exit(EXIT_SUCCESS);
  92. }

SEE ALSO
       eventfd(2),   poll(2),   read(2),  select(2),  setitimer(2),  signalfd(2),  timer_create(2),  timer_gettime(2),
       timer_settime(2), epoll(7), time(7)

COLOPHON
       This page is part of release 3.74 of the Linux man-pages project.  A description of  the  project,  information
       about    reporting    bugs,    and    the    latest    version    of    this    page,    can    be   found   at
       http://www.kernel.org/doc/man-pages/.

Linux定时器 timerfd使用的更多相关文章

  1. linux定时器用法

    linux定时器  原文出自http://www.cnblogs.com/processakai/archive/2012/04/11/2442294.html 今天看书看到了关于alarm的一些用法 ...

  2. linux定时器crontab

    linux定时器crontab用法: 1.基本格式 : * * * * * command 分 时 日 月 周 命令 第1列表示分钟1-59 每分钟用*或者 */1表示 第2列表示小时1-23(0表示 ...

  3. Linux 定时器应用【转】

    Linux 定时器应用 实验目的 阅读 Linux 相关源代码,学习 Linux 系统中的时钟和定时器原理,即,ITIMER_REAL实时计数,ITIMER_VIRTUAL 统计进程在用户模式执行的时 ...

  4. 4412 Linux定时器

    一.Linux定时器基础知识 1.1 定时器的使用范围 延后执行某个操作,定时查询某个状态:前提是对时间要求不高的地方 1.2 内核时间概念 Hz:(系统时钟通过CONFIG_HZ来设置,范围是100 ...

  5. Linux使用定时器timerfd 和 eventfd接口实现进程线程通信

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  6. fd定时器--timerfd学习

    定时器 可以用系统定时器信号SIGALARM 最近工作需要于是又发现了一个新玩意timerfd配合epoll使用. man 手册看一下 TIMERFD_CREATE(2) Linux Programm ...

  7. linux定时器(crontab)实例

    linux实验示例----实现每2分钟将“/etc”下面的文件打包存储到“/usr/lobal”目录下 ·Step1:编辑当前用户的crontab并保存终端输入:>crontab -u root ...

  8. Linux定时器相关源码分析

    Linux的定时器使用时间轮算法.数据结构不难理解,核心数据结构与散列表及其相似,甚至可以说,就是散列表.事实上,理解其散列表的本质,有助于对相关操作的理解. 数据结构 这里先列出一些宏,稍后解释: ...

  9. Smart210学习记录-----linux定时器

    1.内核定时器: Linux 内核所提供的用于操作定时器的数据结构和函数如下: (1) timer_list 在 Linux 内核中,timer_list 结构体的一个实例对应一个定时器 1 stru ...

随机推荐

  1. Java并发系列[3]----AbstractQueuedSynchronizer源码分析之共享模式

    通过上一篇的分析,我们知道了独占模式获取锁有三种方式,分别是不响应线程中断获取,响应线程中断获取,设置超时时间获取.在共享模式下获取锁的方式也是这三种,而且基本上都是大同小异,我们搞清楚了一种就能很快 ...

  2. mysql 我们眼中的int(10)

    自我总结,欢迎拍砖! 目的:定义int(3)和int(10)真的有区别吗? 论证: 1.创建student,student2表 分别定义一个student,student2表 create table ...

  3. Animations and transitions

    在交互式可视化中,有一个词叫reactive,指的是以可视化的方式来响应用户的行为,帮助用户进行可视化并理解其结果.这个很有用.那如何来实现这种交互呢?通过动画. 如果处理得当,动画可以展现出不错的可 ...

  4. POJ 2653 Pick-up sticks [线段相交 迷之暴力]

    Pick-up sticks Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12861   Accepted: 4847 D ...

  5. 将你的Python Web程序部署到Ubuntu服务器上

    在本文记录了我在Ubuntu中部署Flask Web站点的过程, 其中包括用户创建.代码获取.Python3环境的安装.虚拟环境设置.uWSGI启动程序设置,并将Nginx作为前端反向代理.希望对各位 ...

  6. WPF字典集合类ObservableDictionary

    WPF最核心的技术优势之一就是数据绑定.数据绑定,可以通过对数据的操作来更新界面. 数据绑定最经常用到的是ObservableCollection<T> 和 Dictionary<T ...

  7. CocosCreator游戏开发---菜鸟学习之路(二)SocketIO简易教程

    请先参考教程司令部-SocketIO教程进行相关操作 开发完成后部分用户会出现持续输出 a userConnected的BUG 如下图所示 经过一段时间的BUG检查终于发现了问题所在.每个人碰到的情况 ...

  8. CSS常用属性计算原理

    absolute: left.right/top.bottom 的百分比值分别根据父元素的 wdith / height 计算 margin: top /right / bottom/ left 的百 ...

  9. Sublime Text3 快捷键汇总及设置快捷键配置环境变量

    Ctrl+D 选词 (反复按快捷键,即可继续向下同时选中下一个相同的文本进行同时编辑)Ctrl+G 跳转到相应的行Ctrl+J 合并行(已选择需要合并的多行时)Ctrl+L 选择整行(按住-继续选择下 ...

  10. python学习:Dmidecode系统信息(一)

    #!/usr/bin/env python   from subprocess import Popen, PIPE   p = Popen(['dmidecode'], stdout=PIPE) d ...