Linux定时器 timerfd使用
英文使用手册原汁原味,一手资料。
NAME
timerfd_create, timerfd_settime, timerfd_gettime - timers that notify via file descriptors
SYNOPSIS
- #include <sys/timerfd.h>
- int timerfd_create(int clockid, int flags);
- int timerfd_settime(int fd, int flags,
- const struct itimerspec *new_value,
- struct itimerspec *old_value);
- int timerfd_gettime(int fd, struct itimerspec *curr_value);
DESCRIPTION
These system calls create and operate on a timer that delivers timer expiration notifications(过期通知) via a file
descriptor. They provide an alternative to the use of setitimer(2) or timer_create(2), with the advantage that
the file descriptor may be monitored by select(2), poll(2), and epoll(7).
The use of these three system calls is analogous to the use of timer_create(2), timer_settime(2), and
timer_gettime(2). (There is no analog of timer_getoverrun(2), since that functionality is provided by read(2),
as described below.)
timerfd_create()
- int timerfd_create(int clockid, int flags);//创建一个时间对象,并返回一个指向该事件对象的文件描述符
timerfd_create() creates a new timer object, and returns a file descriptor that refers to that timer. The
clockid argument specifies the clock that is used to mark the progress of the timer, and must be either
CLOCK_REALTIME or CLOCK_MONOTONIC.
1、CLOCK_REALTIME is a settable system-wide clock.
2、CLOCK_MONOTONIC is a nonsettable clock that is not affected by discontinuous changes in the system clock
(e.g., manual changes to system time). The current value of each of these clocks can be retrieved using clock_gettime(2).
Starting with Linux 2.6.27, the following values may be bitwise ORed in flags to change the behavior of
timerfd_create():
TFD_NONBLOCK Set the O_NONBLOCK file status flag on the new open file description. Using this flag saves
extra calls to fcntl(2) to achieve the same result.
TFD_CLOEXEC Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the description of the
O_CLOEXEC flag in open(2) for reasons why this may be useful.
In Linux versions up to and including 2.6.26, flags must be specified as zero.
timerfd_settime()
- int timerfd_settime(int fd, int flags,
- const struct itimerspec *new_value,
- struct itimerspec *old_value);
timerfd_settime() arms (starts) or disarms (stops) the timer referred to by the file descriptor fd.
The new_value argument specifies the initial expiration and interval for the timer. The itimer structure used
for this argument contains two fields, each of which is in turn a structure of type timespec:
- struct timespec {
- time_t tv_sec; /* Seconds */
- long tv_nsec; /* Nanoseconds 十亿分之一秒*/
- };
- struct itimerspec {
- struct timespec it_interval; /* Interval for periodic timer 周期*/
- struct timespec it_value; /* Initial expiration 初始过期时间*/
- };
new_value.it_value specifies the initial expiration of the timer, in seconds and nanoseconds.
1、Setting either field of new_value.it_value to a nonzero(非零) value arms the timer. (设置一个为非零表示启动定时器)
2、Setting both fields of new_value.it_value to zero disarms the timer.(设置两个为零表示关闭定时器)
3、Setting one or both fields of new_value.it_interval to nonzero values specifies the period, in seconds and
nanoseconds, for repeated timer expirations after the initial expiration. (至少一个非零,表示设定周期,定时器周期性工作)
4、If both fields of new_value.it_interval are zero, the timer expires just once, at the time specified by new_value.it_value.
(如果new_value.it_interval的两个时间域都为零,则表示定时器只工作一次,即到达初始过期时间后就停止工作,非周期性)
The flags argument is either 0, to start a relative timer(相对时间) (new_value.it_value specifies a time relative to the
current value of the clock specified by clockid), or TFD_TIMER_ABSTIME, to start an absolute timer(绝对时间)
(new_value.it_value specifies an absolute time for the clock specified by clockid; that is, the timer will
expire when the value of that clock reaches the value specified in new_value.it_value).
If the old_value argument is not NULL, then the itimerspec structure that it points to is used to return the
setting of the timer that was current at the time of the call; see the description of timerfd_gettime() follow‐
ing.
timerfd_gettime()
- int timerfd_gettime(int fd, struct itimerspec *curr_value);
timerfd_gettime() returns, in curr_value, an itimerspec structure that contains the current setting of the
timer referred to by the file descriptor fd.
The it_value field returns the amount of time until the timer will next expire. If both fields of this struc‐
ture are zero, then the timer is currently disarmed. This field always contains a relative value, regardless
of whether the TFD_TIMER_ABSTIME flag was specified when setting the timer.
The it_interval field returns the interval of the timer. If both fields of this structure are zero, then the
timer is set to expire just once, at the time specified by curr_value.it_value.
Operating on a timer file descriptor
The file descriptor returned by timerfd_create() supports the following operations:
read(2)
If the timer has already expired one or more times since its settings were last modified using
timerfd_settime(), or since the last successful read(2), then the buffer given to read(2) returns an
unsigned 8-byte integer (uint64_t) containing the number of expirations that have occurred. (The
returned value is in host byte order—that is, the native byte order for integers on the host machine.)
If no timer expirations have occurred at the time of the read(2), then the call either blocks until the
next timer expiration, or fails with the error EAGAIN if the file descriptor has been made nonblocking
(via the use of the fcntl(2) F_SETFL operation to set the O_NONBLOCK flag).
A read(2) will fail with the error EINVAL if the size of the supplied buffer is less than 8 bytes.
poll(2), select(2) (and similar)
The file descriptor is readable (the select(2) readfds argument; the poll(2) POLLIN flag) if one or more
timer expirations have occurred.
The file descriptor also supports the other file-descriptor multiplexing APIs: pselect(2), ppoll(2), and
epoll(7).
close(2)
When the file descriptor is no longer required it should be closed. When all file descriptors associ‐
ated with the same timer object have been closed, the timer is disarmed and its resources are freed by
the kernel.
fork(2) semantics
After a fork(2), the child inherits a copy of the file descriptor created by timerfd_create(). The file
descriptor refers to the same underlying timer object as the corresponding file descriptor in the parent, and
read(2)s in the child will return information about expirations of the timer.
execve(2) semantics
A file descriptor created by timerfd_create() is preserved across execve(2), and continues to generate timer
expirations if the timer was armed.
RETURN VALUE
On success, timerfd_create() returns a new file descriptor. On error, -1 is returned and errno is set to indi‐
cate the error.
timerfd_settime() and timerfd_gettime() return 0 on success; on error they return -1, and set errno to indicate
the error.
ERRORS
timerfd_create() can fail with the following errors:
EINVAL The clockid argument is neither CLOCK_MONOTONIC nor CLOCK_REALTIME;
EINVAL flags is invalid; or, in Linux 2.6.26 or earlier, flags is nonzero.
EMFILE The per-process limit of open file descriptors has been reached.
ENFILE The system-wide limit on the total number of open files has been reached.
ENODEV Could not mount (internal) anonymous inode device.
ENOMEM There was insufficient kernel memory to create the timer.
timerfd_settime() and timerfd_gettime() can fail with the following errors:
EBADF fd is not a valid file descriptor.
EFAULT new_value, old_value, or curr_value is not valid a pointer.
EINVAL fd is not a valid timerfd file descriptor.
timerfd_settime() can also fail with the following errors:
EINVAL new_value is not properly initialized (one of the tv_nsec falls outside the range zero to 999,999,999).
EINVAL flags is invalid.
VERSIONS
These system calls are available on Linux since kernel 2.6.25. Library support is provided by glibc since ver‐
sion 2.8.
CONFORMING TO
These system calls are Linux-specific.
BUGS
Currently, timerfd_create() supports fewer types of clock IDs than timer_create(2).
EXAMPLE
The following program creates a timer and then monitors its progress. The program accepts up to three command-
line arguments. The first argument specifies the number of seconds for the initial expiration of the timer.
The second argument specifies the interval for the timer, in seconds. The third argument specifies the number
of times the program should allow the timer to expire before terminating. The second and third command-line
arguments are optional.
The following shell session demonstrates the use of the program:
- $ a.out
- 0.000: timer started
- 3.000: read: ; total=
- 4.000: read: ; total=
- ^Z # type control-Z to suspend the program
- []+ Stopped ./timerfd3_demo
- $ fg # Resume execution after a few seconds
- a.out
- 9.660: read: ; total=
- 10.000: read: ; total=
- 11.000: read: ; total=
- ^C # type control-C to suspend the program
Program source
- #include <sys/timerfd.h>
- #include <time.h>
- #include <unistd.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include <stdint.h> /* Definition of uint64_t */
- #define handle_error(msg) \
- do { perror(msg); exit(EXIT_FAILURE); } while ()
- static void
- print_elapsed_time(void)
- {
- static struct timespec start;
- struct timespec curr;
- static int first_call = ;
- int secs, nsecs;
- if (first_call) {
- first_call = ;
- if (clock_gettime(CLOCK_MONOTONIC, &start) == -)
- handle_error("clock_gettime");
- }
- if (clock_gettime(CLOCK_MONOTONIC, &curr) == -)
- handle_error("clock_gettime");
- secs = curr.tv_sec - start.tv_sec;
- nsecs = curr.tv_nsec - start.tv_nsec;
- if (nsecs < ) {
- secs--;
- nsecs += ;
- }
- printf("%d.%03d: ", secs, (nsecs + ) / );
- }
- int
- main(int argc, char *argv[])
- {
- struct itimerspec new_value;
- int max_exp, fd;
- struct timespec now;
- uint64_t exp, tot_exp;
- ssize_t s;
- if ((argc != ) && (argc != )) {
- fprintf(stderr, "%s init-secs [interval-secs max-exp]\n",
- argv[]);
- exit(EXIT_FAILURE);
- }
- if (clock_gettime(CLOCK_REALTIME, &now) == -)
- handle_error("clock_gettime");
- /* Create a CLOCK_REALTIME absolute timer with initial
- expiration and interval as specified in command line */
- new_value.it_value.tv_sec = now.tv_sec + atoi(argv[]);
- new_value.it_value.tv_nsec = now.tv_nsec;
- if (argc == ) {
- new_value.it_interval.tv_sec = ;
- max_exp = ;
- } else {
- new_value.it_interval.tv_sec = atoi(argv[]);
- max_exp = atoi(argv[]);
- }
- new_value.it_interval.tv_nsec = ;
- fd = timerfd_create(CLOCK_REALTIME, );
- if (fd == -)
- handle_error("timerfd_create");
- if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == -)
- handle_error("timerfd_settime");
- print_elapsed_time();
- printf("timer started\n");
- for (tot_exp = ; tot_exp < max_exp;) {
- s = read(fd, &exp, sizeof(uint64_t));
- if (s != sizeof(uint64_t))
- handle_error("read");
- tot_exp += exp;
- print_elapsed_time();
- printf("read: %llu; total=%llu\n",
- (unsigned long long) exp,
- (unsigned long long) tot_exp);
- }
- exit(EXIT_SUCCESS);
- }
SEE ALSO
eventfd(2), poll(2), read(2), select(2), setitimer(2), signalfd(2), timer_create(2), timer_gettime(2),
timer_settime(2), epoll(7), time(7)
COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.
Linux定时器 timerfd使用的更多相关文章
- linux定时器用法
linux定时器 原文出自http://www.cnblogs.com/processakai/archive/2012/04/11/2442294.html 今天看书看到了关于alarm的一些用法 ...
- linux定时器crontab
linux定时器crontab用法: 1.基本格式 : * * * * * command 分 时 日 月 周 命令 第1列表示分钟1-59 每分钟用*或者 */1表示 第2列表示小时1-23(0表示 ...
- Linux 定时器应用【转】
Linux 定时器应用 实验目的 阅读 Linux 相关源代码,学习 Linux 系统中的时钟和定时器原理,即,ITIMER_REAL实时计数,ITIMER_VIRTUAL 统计进程在用户模式执行的时 ...
- 4412 Linux定时器
一.Linux定时器基础知识 1.1 定时器的使用范围 延后执行某个操作,定时查询某个状态:前提是对时间要求不高的地方 1.2 内核时间概念 Hz:(系统时钟通过CONFIG_HZ来设置,范围是100 ...
- Linux使用定时器timerfd 和 eventfd接口实现进程线程通信
body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...
- fd定时器--timerfd学习
定时器 可以用系统定时器信号SIGALARM 最近工作需要于是又发现了一个新玩意timerfd配合epoll使用. man 手册看一下 TIMERFD_CREATE(2) Linux Programm ...
- linux定时器(crontab)实例
linux实验示例----实现每2分钟将“/etc”下面的文件打包存储到“/usr/lobal”目录下 ·Step1:编辑当前用户的crontab并保存终端输入:>crontab -u root ...
- Linux定时器相关源码分析
Linux的定时器使用时间轮算法.数据结构不难理解,核心数据结构与散列表及其相似,甚至可以说,就是散列表.事实上,理解其散列表的本质,有助于对相关操作的理解. 数据结构 这里先列出一些宏,稍后解释: ...
- Smart210学习记录-----linux定时器
1.内核定时器: Linux 内核所提供的用于操作定时器的数据结构和函数如下: (1) timer_list 在 Linux 内核中,timer_list 结构体的一个实例对应一个定时器 1 stru ...
随机推荐
- Java并发系列[3]----AbstractQueuedSynchronizer源码分析之共享模式
通过上一篇的分析,我们知道了独占模式获取锁有三种方式,分别是不响应线程中断获取,响应线程中断获取,设置超时时间获取.在共享模式下获取锁的方式也是这三种,而且基本上都是大同小异,我们搞清楚了一种就能很快 ...
- mysql 我们眼中的int(10)
自我总结,欢迎拍砖! 目的:定义int(3)和int(10)真的有区别吗? 论证: 1.创建student,student2表 分别定义一个student,student2表 create table ...
- Animations and transitions
在交互式可视化中,有一个词叫reactive,指的是以可视化的方式来响应用户的行为,帮助用户进行可视化并理解其结果.这个很有用.那如何来实现这种交互呢?通过动画. 如果处理得当,动画可以展现出不错的可 ...
- POJ 2653 Pick-up sticks [线段相交 迷之暴力]
Pick-up sticks Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 12861 Accepted: 4847 D ...
- 将你的Python Web程序部署到Ubuntu服务器上
在本文记录了我在Ubuntu中部署Flask Web站点的过程, 其中包括用户创建.代码获取.Python3环境的安装.虚拟环境设置.uWSGI启动程序设置,并将Nginx作为前端反向代理.希望对各位 ...
- WPF字典集合类ObservableDictionary
WPF最核心的技术优势之一就是数据绑定.数据绑定,可以通过对数据的操作来更新界面. 数据绑定最经常用到的是ObservableCollection<T> 和 Dictionary<T ...
- CocosCreator游戏开发---菜鸟学习之路(二)SocketIO简易教程
请先参考教程司令部-SocketIO教程进行相关操作 开发完成后部分用户会出现持续输出 a userConnected的BUG 如下图所示 经过一段时间的BUG检查终于发现了问题所在.每个人碰到的情况 ...
- CSS常用属性计算原理
absolute: left.right/top.bottom 的百分比值分别根据父元素的 wdith / height 计算 margin: top /right / bottom/ left 的百 ...
- Sublime Text3 快捷键汇总及设置快捷键配置环境变量
Ctrl+D 选词 (反复按快捷键,即可继续向下同时选中下一个相同的文本进行同时编辑)Ctrl+G 跳转到相应的行Ctrl+J 合并行(已选择需要合并的多行时)Ctrl+L 选择整行(按住-继续选择下 ...
- python学习:Dmidecode系统信息(一)
#!/usr/bin/env python from subprocess import Popen, PIPE p = Popen(['dmidecode'], stdout=PIPE) d ...