视频学习来源

https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553

笔记

环境为 anaconda + python3.7

Keras 线性回归

import keras

from keras.layers import Dense

from keras.models import Sequential

import numpy as np

import matplotlib.pyplot as plt

#设置x的数据值

x_data=np.random.rand(100)

np.random.rand(d0,d1,d2……dn)
返回服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1)。 

np.random.randn()函数

可以返回服从标准正态分布的随机样本值。
#设置噪声

noise=np.random.normal(0,0.01,x_data.shape)

numpy.random.normal(loc=0.0, scale=1.0, size=None)

loc:均值

scale:float  标准差

size:长度。

#构造函数

y_data=x_data*0.1+0.2+noise

#画出函数

plt.scatter(x_data,y_data) #scatter散点图

plt.show()

model=Sequential() #建立顺序模型序列

model.add(Dense(units=1,input_dim=1))#输入维度为1,输出维度为1 

添加一个网络层 输入维度为1,输出维度为1 

model.compile(optimizer='sgd',loss='mse') #设置SGD优化模型,

#训练,迭代步为3001次。

for step in range(3001):

    cost=model.train_on_batch(x_data,y_data) #batch 为每次训练的批次

    if step%500 ==0:

        print('cost:',cost) #每500次输出一次

#打印权值和偏置值

w,b=model.layers[0].get_weights()

print("w:",w,"b:",b)

#生成预测值

y_pred=model.predict(x_data)

plt.scatter(x_data,y_data)

plt.plot(x_data,y_pred,'r-',lw=3) #红色,长度为3

plt.show()

(一) Keras 一元线性回归的更多相关文章

  1. 回归分析法&一元线性回归操作和解释

    用Excel做回归分析的详细步骤 一.什么是回归分析法 "回归分析"是解析"注目变量"和"因于变量"并明确两者关系的统计方法.此时,我们把因 ...

  2. R语言解读一元线性回归模型

    转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体 ...

  3. 一元线性回归模型与最小二乘法及其C++实现

    原文:http://blog.csdn.net/qll125596718/article/details/8248249 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等), ...

  4. R语言 一元线性回归

    #一元线性回归的基本步骤#1.载入数据 给出散点图 x<-c(0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.20,0.21,0.23) y< ...

  5. machine learning 之 导论 一元线性回归

    整理自Andrew Ng 的 machine learnig 课程 week1. 目录: 什么是机器学习 监督学习 非监督学习 一元线性回归 模型表示 损失函数 梯度下降算法 1.什么是机器学习 Ar ...

  6. R语言做一元线性回归

    只有两个变量,做相关性分析,先来个一元线性回归吧 因为未处理的x,y相关性不显著,于是用了ln(1+x)函数做了个处理(发现大家喜欢用ln,log,lg,指数函数做处理),处理完以后貌似就显著了..虽 ...

  7. Python实现——一元线性回归(梯度下降法)

    2019/3/25 一元线性回归--梯度下降/最小二乘法_又名:一两位小数点的悲剧_ 感觉这个才是真正的重头戏,毕竟前两者都是更倾向于直接使用公式,而不是让计算机一步步去接近真相,而这个梯度下降就不一 ...

  8. 梯度下降法及一元线性回归的python实现

    梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在 ...

  9. pytorch和tensorflow的爱恨情仇之一元线性回归例子(keras插足啦)

    直接看代码: 一.tensorflow #tensorflow import tensorflow as tf import random import numpy as np x_data = np ...

随机推荐

  1. 深入理解令牌认证机制(token)

    以前的开发模式是以MVC为主,但是随着互联网行业快速的发展逐渐的演变成了前后端分离,若项目中需要做登录的话,那么token成为前后端唯一的一个凭证. token即标志.记号的意思,在IT领域也叫作令牌 ...

  2. 30分钟玩转Net MVC 基于WebUploader的大文件分片上传、断网续传、秒传(文末附带demo下载)

    现在的项目开发基本上都用到了上传文件功能,或图片,或文档,或视频.我们常用的常规上传已经能够满足当前要求了, 然而有时会出现如下问题: 文件过大(比如1G以上),超出服务端的请求大小限制: 请求时间过 ...

  3. 【php性能优化】关于写入文件操作的取舍方案

    对于使用php对文件进行写入操作有两种方案一种使用 file_put_contents() 和 fopen()/fwrite()/fclose() 两种方案至于应该怎么选,我觉得应该分情况选择,下面是 ...

  4. ArcGIS对SLD样式的支持

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.ArcGISWMS服务对SLD的支持 在完成用geoserver的w ...

  5. Android values资源的定义

    Android values资源是Xml格式的文件 上图定义了颜色(colors)字符串(strings)样式(style)三个资源文件 xml文件写在resources标签里 <?xml ve ...

  6. 巧妙地使用typora编辑有道云笔记

    设置方法 找到有道云笔记本地保存路径: 找到有道云笔记的保存的路径:启动有道云 - 设置 - 有道云笔记(本地文件) - 打开文件夹 使用typora打开有道云笔记目录: typora 菜单栏 - O ...

  7. Storm入门(十三)Storm Trident 教程

    转自:http://blog.csdn.net/derekjiang/article/details/9126185 英文原址:https://github.com/nathanmarz/storm/ ...

  8. Hadoop系列008-HDFS的数据流

    本人微信公众号,欢迎扫码关注! HDFS的数据流 1 HDFS写数据流程 1.1 剖析文件写入 1)客户端向namenode请求上传文件,namenode检查目标文件是否已存在,父目录是否存在. 2) ...

  9. 当List<String> list =new ArrayList<String>(20); 他会扩容多少次

    当List<String> list =new ArrayList<String>(20); 他会扩容多少次?A 0       B 1 C 2 D 3答案是A: 因为这个集合 ...

  10. 从零开始学习PYTHON3讲义(十二)画一颗心送给你

    (内容需要,本讲使用了大量在线公式,如果因为转帖网站不支持公式无法显示的情况,欢迎访问原始博客.) <从零开始PYTHON3>第十二讲 上一节课我们主要讲解了数值计算和符号计算.数值计算的 ...