BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]
4517: [Sdoi2016]排列计数
题意:多组询问,n的全排列中恰好m个不是错排的有多少个
容斥原理强行推♂倒她
$恰好m个不是错排 $
= \sum_{i=m}^n \binom{n}{i} (n-i)!\binom{i}{m} \\
= \frac{n!}{m!} \sum_{i=m}^n (-1)^{i-m} \frac{1}{(i-m)!}
\]
预处理阶乘逆元前缀和就可以\(O(1)\)回答了
其实错排公式也是这么推倒来的
PS:发现题解全都是用的错排公式,~~等出一道你们不知道公式的题你们再用啊~~
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
#define fir first
#define sec second
const int N=1e6+5, P=1e9+7;
inline int read() {
char c=getchar(); int x=0, f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, m;
ll inv[N], fac[N], facInv[N], s[N];
int main() {
freopen("permutation.in","r",stdin);
freopen("permutation.out","w",stdout);
inv[1]=1; fac[0]=facInv[0]=1;
s[0]=1;
for(int i=1; i<N; i++) {
if(i!=1) inv[i] = (P-P/i)*inv[P%i]%P;
fac[i] = fac[i-1]*i%P;
facInv[i] = facInv[i-1]*inv[i]%P;
s[i] = (s[i-1] + ((i&1) ? -facInv[i] : facInv[i]))%P;
}
int T=read();
while(T--) {
n=read(); m=read();
ll ans = fac[n]*facInv[m]%P * s[n-m]%P;
if(ans<0) ans+=P;
printf("%lld\n", ans);
}
}
BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]的更多相关文章
- Bzoj 4517: [Sdoi2016]排列计数(排列组合)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...
- BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 911 Solved: 566[Submit][Status ...
- 数学(错排):BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 693 Solved: 434[Submit][Status ...
- BZOJ 4517: [Sdoi2016]排列计数 错排公式
4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...
- BZOJ 4517: [Sdoi2016]排列计数 错排+逆元
4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...
- bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】
第一个一眼就A的容斥题! 这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数. \[ D_n=n!-\sum_{t=1}^{n}( ...
- BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)
题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...
- BZOJ 4517: [Sdoi2016]排列计数(组合数学)
题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...
- BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合
从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...
随机推荐
- [国嵌笔记][036][关闭MMU和CACHE]
关闭MMU和CACHE 1.Cache是一种容量小,但存取速度非常快的存储器,它保存最近用到的存储器中数据的拷贝.按功能分为ICache(指令Cache)和DCache(数据Cache) 2.虚拟地址 ...
- 基础二 day4
昨日回顾int bit_lenth()bool int ----> bool 非零True,0 False bool----> True 1 False 0 str ----> bo ...
- Spark算子--coalesce和repartition
coalesce和repartition--Transformation类算子 代码示例
- iptabes的用法
iptables的用法 基本用法: iptables [-t table] [subcommand] chain [rulenum] [options...] [match] [target] ipt ...
- IE调试网页之三:使用 F12 工具控制台查看错误和状态 (Windows)
IE调试网页之三:使用 F12 工具控制台查看错误和状态 (Windows) 等 请见博客园的 我的收藏
- JDBC 元数据 (DatabaseMetaData,ResultSetMetaData )
Java 通过JDBC获得连接以后,得到一个Connection 对象,可以从这个对象获得有关数据库管理系统的各种信息,包括数据库中的各个表,表中的各个列,数据类型,触发器,存储过程等各方面的信息.根 ...
- Build path contains duplicate entry
问题:Build path contains duplicate entry:''D:soft/Myeclipse 6.5/jre/lib/rt.jar' for project 'dataServi ...
- JavaScript学习日志:关于js分号
javascript有自动添加分号的功能,但是不是所有情况都会自动添加,要区分: 1,如果语句独占一行 如果当前行内的语句能够被js正确解析,那么就会在句尾添加一个分号. (如何判断是否正确解析?你在 ...
- jQuery时间格式插件-moment.js的使用
jQuery时间格式插件-moment.js的使用 moment.js插件的使用,使用之前在页面引入对应的js文件: 详细的操作可见moment中文官网:http://momentjs.cn/ 日期格 ...
- 深入浅出docker
笔者在海外工作多年,所以文中多用英文单词,有些时候是为了更精准的描述,请见谅.希望这篇随笔能帮大家入门docker.由于在海外连博客园有些慢,所以我图片用的比较少,以后再考虑一下如何更好的解决图片上传 ...