POJ 1830 开关问题 [高斯消元XOR]
和上两题一样
Input
每组测试数据的格式如下:
第一行 一个数N(0 < N < 29)
第二行 N个0或者1的数,表示开始时N个开关状态。
第三行 N个0或者1的数,表示操作结束后N个开关的状态。
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。
注意判断无解别把if放错位置
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bitset>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,u,v;
bitset<N> a[N];
void ini(){for(int i=;i<=n;i++) a[i].reset();}
int now;
void Gauss(){
now=;
for(int i=;i<=n;i++){
int j=now;
while(j<=n&&!a[j][i]) j++;
if(j==n+) continue;
if(j!=now) swap(a[now],a[j]);
for(int k=;k<=n;k++)
if(k!=now&&a[k][i]) a[k]^=a[now];
now++;
}
}
int main(){
freopen("in","r",stdin);
int T=read();
while(T--){
n=read();
ini();
for(int i=;i<=n;i++) a[i][n+]=read();
for(int i=;i<=n;i++) a[i][n+]=a[i][n+]==read()?:;
for(int i=;i<=n;i++) a[i][i]=;
while(true){
u=read();v=read();
if(u==&&v==) break;
a[v][u]=;
}
Gauss();
int flag=;
//for(int i=1;i<=n;i++) for(int j=1;j<=n+1;j++) printf("%d%c",a[i][j]==1,j==n+1?'\n':' ');
for(int i=;i<=n;i++)
if(a[i][n+]){
int f=;
for(int j=;j<=n;j++) if(a[i][j]==) f=;
if(f==){flag=;break;}
}
if(flag) puts("Oh,it's impossible~!!");
else printf("%d\n",<<(n-now+));
}
}
POJ 1830 开关问题 [高斯消元XOR]的更多相关文章
- POJ 1830 开关问题 高斯消元,自由变量个数
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...
- POJ 1830 开关问题 (高斯消元)
题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...
- POJ.1830.开关问题(高斯消元 异或方程组)
题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...
- POJ 3185 The Water Bowls 【一维开关问题 高斯消元】
任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ - 1681: Painter's Problem (开关问题-高斯消元)
pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...
- POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)
pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...
- POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组
http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...
- 2015南阳CCPC E - Ba Gua Zhen 高斯消元 xor最大
Ba Gua Zhen Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 无 Description During the Three-Kingdom perio ...
- 【BZOJ-1923】外星千足虫 高斯消元 + xor方程组
1923: [Sdoi2010]外星千足虫 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 766 Solved: 485[Submit][Status ...
随机推荐
- cin与cout详解
输入和输出并不是C++语言中的正式组成成分。C和C++本身都没有为输入和输出提供专门的语句结构。输入输出不是由C++本身定义的,而是在编译系统提供的I/O库中定义的。C++的输出和输入是用" ...
- mui 区域三级联动
<link href="../../css/mui.picker.css" rel="stylesheet" /><link href=&qu ...
- Java数据结构和算法(十二)——2-3-4树
通过前面的介绍,我们知道在二叉树中,每个节点只有一个数据项,最多有两个子节点.如果允许每个节点可以有更多的数据项和更多的子节点,就是多叉树.本篇博客我们将介绍的——2-3-4树,它是一种多叉树,它的每 ...
- [国嵌笔记][011][Linux密码破解]
破解步骤 1.在系统启动时进入grub选项菜单 2.在grub选项菜单中按e进入编辑模式 3.编辑kernel行,添加 /init 1 (表示进入单用户启动模式,在单用户启动模式中不会要求输入密码) ...
- O2O网站
编辑 020是新型的网络营销模式,O2O即Online To Offline,线下销售与服务通过线上推广来揽客,消费者可以通过线上来筛选需求,在线预订.结算,甚至可以灵活地进行线上预订,线下交易.消费 ...
- 谈谈Python、Java与AI
Python好像天生是为AI而生的,随着AI的火热,特别是用Python写的TensorFlow越来越火,Python的热度越来越高,就像当年Java就是随着互联网火起来的感觉.在我的工作中,Pyth ...
- java中的按位与运算
package scanner; public class SingleAnd { public static void main(String[] args) { int[] first = {10 ...
- 堡垒机之paramiko模块
一.paramiko简单介绍 场景预设: 很多运维人员平时进行维护linux/unix主机时候,无非通过ssh到相应主机操作,那么一旦主机有成千上百台,那该如何应对,这时候我们需要批处理工具,基于py ...
- Java 获取年 月 日 时 分 秒
/** * 英文简写(默认)如:2010-12-01 */ public static String FORMAT_SHORT = "yyyy-MM-dd"; /** * 英文全称 ...
- CSS深入理解学习笔记之float
1.float的历史 float设计的初衷仅仅是为了文字环绕效果. 示例代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transit ...