传送门

题意:

给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$
求生成树个数

1 <= n,m,p <= 10^18


显然不能暴力上矩阵树定理
看过推到完全图的生成树个数后这道题也不难做
构建出基尔霍夫矩阵,找一个主子式,所有行加起来放一行上,用这一行消消消就发现最后对角线上有$n-1$个$m$和$m-1$个$n$和$1$个$1$
然后要用快速乘...蒟蒻第一次用快速乘...
#include <iostream>
using namespace std;
typedef long long ll;
ll n,m,P;
inline void mod(ll &x){if(x>=P) x-=P;}
inline ll Mul(ll a,ll b){
ll re=;
for(;b;b>>=,mod(a+=a))
if(b&) mod(re+=a);
return re;
}
inline ll Pow(ll a,ll b){
ll re=;
for(;b;b>>=,a=Mul(a,a))
if(b&) re=Mul(re,a);
return re;
}
int main(){
//freopen("in","r",stdin);
cin>>n>>m>>P;
cout<<Mul(Pow(n,m-),Pow(m,n-));
}
 
 

BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]的更多相关文章

  1. bzoj 4766: 文艺计算姬 矩阵树定理

    题目: 给定一个一边点数为\(n\),另一边点数为\(m\),共有\(n*m\)条边的带标号完全二分图\(K_{n,m}\) 计算其生成树个数 \(n,m,p \leq 10^{18} ,p为模数\) ...

  2. BZOJ4766:文艺计算姬(矩阵树定理)

    Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数 ...

  3. [bzoj4766] 文艺计算姬 (矩阵树定理+二分图)

    传送门 Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生 ...

  4. bzoj 4766: 文艺计算姬 -- 快速乘

    4766: 文艺计算姬 Time Limit: 1 Sec  Memory Limit: 128 MB Description "奋战三星期,造台计算机".小W响应号召,花了三星期 ...

  5. BZOJ 4766: 文艺计算姬

    4766: 文艺计算姬 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 456  Solved: 239[Submit][Status][Discuss] ...

  6. BZOJ.4766.文艺计算姬(Prufer)

    题目链接 这是完全二分图,那么在构造Prufer序列时,最后会剩下两个点,两点的边是连接两个集合的,这两个点自然分属两个集合 那么集合A被删了m-1次,每次从n个点中选:B被删了n-1次,每次都可以从 ...

  7. 【BZOJ】4766: 文艺计算姬

    [题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...

  8. BZOJ 1016 最小生成树计数(矩阵树定理)

    我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...

  9. bzoj 4765: 普通计算姬 主席树+替罪羊树思想

    题目大意: 给定一棵\(n\)个节点的带权树有根树,设\(sum_p\)表示以点\(p\)为根的这棵子树中所有节点的权 计算姬支持下列两种操作: 给定两个整数\(u,v\),修改点\(u\)的权值为\ ...

随机推荐

  1. Educational Codeforces Round 2_B. Queries about less or equal elements

    B. Queries about less or equal elements time limit per test 2 seconds memory limit per test 256 mega ...

  2. JXLS 2.4.0系列教程(五)——更进一步的应用和页面边距bug修复

    注:本文代码建立于前面写的代码.不过不看也不要紧. 前面的文章把JXLS 2.4.0 的基本使用写了一遍,现在讲讲一些更进一步的使用方法.我只写一些我用到过的方法,更多的高级使用方法请参考官网. ht ...

  3. [国嵌攻略][164][USB驱动程序设计]

    USB驱动模型 1.USB host controller driver(主控器驱动):为USB主控制器提供驱动程序 2.USB core(USB核心):连接USB主控制器驱动和USB设备驱动 3.U ...

  4. [国嵌攻略][106][Linux内存管理子系统]

    内存管理子系统 1.虚拟地址与物理地址的映射 2.物理内存的分配 Linux虚拟地址空间分布 设备最后访问的一定是物理地址,但Linux系统中使用的都是虚拟地址.虚拟地址简单的来说就是程序中使用的地址 ...

  5. Spider爬虫 の 事

      初识Spider_Man(爬爬虫) Spider_Man_2 の requests模块   Spider_Man_3 の selenium   Spider_Man_4 の BeautifulSo ...

  6. 对python-rrdtool模块的浅研究。

    一,python-rrdtool模块安装. 切记!!! 这个rrdtool模块,在windows环境下安装太费劲,就是因为没安装上所以现在改成了在ubuntu环境下开发,原来没有体会过,现在可真是体会 ...

  7. 淘淘商城学习笔记 之 上传图片到远程服务器,图片的回显出现的bug

    最近在学习淘淘商城中用到的技术,感觉受益良多,遇到一个比较奇怪的bug调了好久,遂心乐之分享于诸君 bug情况是这样的:在商城的后台上传图片之后图片回显不出来,右键查看链接,发现链接被加了localh ...

  8. tp5 点击刷新验证码

    <form action="<{:url('index/index/login')}>" method="post" name="f ...

  9. SQLite学习手册(实例代码<一>)

    一.获取表的Schema信息:       1). 动态创建表.     2). 根据sqlite3提供的API,获取表字段的信息,如字段数量以及每个字段的类型.     3). 删除该表.     ...

  10. vue学习笔记(一)——why Vue