传送门

题意:

给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$
求生成树个数

1 <= n,m,p <= 10^18


显然不能暴力上矩阵树定理
看过推到完全图的生成树个数后这道题也不难做
构建出基尔霍夫矩阵,找一个主子式,所有行加起来放一行上,用这一行消消消就发现最后对角线上有$n-1$个$m$和$m-1$个$n$和$1$个$1$
然后要用快速乘...蒟蒻第一次用快速乘...
#include <iostream>
using namespace std;
typedef long long ll;
ll n,m,P;
inline void mod(ll &x){if(x>=P) x-=P;}
inline ll Mul(ll a,ll b){
ll re=;
for(;b;b>>=,mod(a+=a))
if(b&) mod(re+=a);
return re;
}
inline ll Pow(ll a,ll b){
ll re=;
for(;b;b>>=,a=Mul(a,a))
if(b&) re=Mul(re,a);
return re;
}
int main(){
//freopen("in","r",stdin);
cin>>n>>m>>P;
cout<<Mul(Pow(n,m-),Pow(m,n-));
}
 
 

BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]的更多相关文章

  1. bzoj 4766: 文艺计算姬 矩阵树定理

    题目: 给定一个一边点数为\(n\),另一边点数为\(m\),共有\(n*m\)条边的带标号完全二分图\(K_{n,m}\) 计算其生成树个数 \(n,m,p \leq 10^{18} ,p为模数\) ...

  2. BZOJ4766:文艺计算姬(矩阵树定理)

    Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数 ...

  3. [bzoj4766] 文艺计算姬 (矩阵树定理+二分图)

    传送门 Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生 ...

  4. bzoj 4766: 文艺计算姬 -- 快速乘

    4766: 文艺计算姬 Time Limit: 1 Sec  Memory Limit: 128 MB Description "奋战三星期,造台计算机".小W响应号召,花了三星期 ...

  5. BZOJ 4766: 文艺计算姬

    4766: 文艺计算姬 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 456  Solved: 239[Submit][Status][Discuss] ...

  6. BZOJ.4766.文艺计算姬(Prufer)

    题目链接 这是完全二分图,那么在构造Prufer序列时,最后会剩下两个点,两点的边是连接两个集合的,这两个点自然分属两个集合 那么集合A被删了m-1次,每次从n个点中选:B被删了n-1次,每次都可以从 ...

  7. 【BZOJ】4766: 文艺计算姬

    [题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...

  8. BZOJ 1016 最小生成树计数(矩阵树定理)

    我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...

  9. bzoj 4765: 普通计算姬 主席树+替罪羊树思想

    题目大意: 给定一棵\(n\)个节点的带权树有根树,设\(sum_p\)表示以点\(p\)为根的这棵子树中所有节点的权 计算姬支持下列两种操作: 给定两个整数\(u,v\),修改点\(u\)的权值为\ ...

随机推荐

  1. $(function(){...});的作用

    这是JQuery的语法,$表示JQuery对象,可以有好几种用法.比如传递选择器字符串.页面对象等,如果直接传函数体进去,表示网页加载完毕后要执行的意思.和JAVASCRIPT原来的这个是一样的: w ...

  2. 在Ubuntu虚拟机搭建数据库系统

    连接数据库: mysql -uroot -p 输入数据库密码即可登陆. 查看mysql版本信息: mysql> select version(); +---------------------- ...

  3. UE4 custom depth 自定义深度

    用途1: 半透明材质中实现遮挡Mesh自己其他部分的效果. 不遮挡效果如下: 遮挡后效果如下: 实现方法: 深度信息是越远值越大,使用两个Mesh,一个正常渲染,另一个渲染到custom depth ...

  4. Thinkphp+Nginx(PHPstudy)下报的404错误,403错误解决

    最近一个TP5的项目说放到Nginx下测试看看,下载个 PHPstudy,放到WWW下,配置好域名,直接给个报个404: 解决方法: 1.先在phpstudy下配置好域名目录指向项目下的public下 ...

  5. php中urldecode()和urlencode()起什么作用啊

    urlencode()函数原理就是首先把中文字符转换为十六进制,然后在每个字符前面加一个标识符%. urldecode()函数与urlencode()函数原理相反,用于解码已编码的 URL 字符串,其 ...

  6. parse_url   解析 URL,返回其组成部分

    parse_url - 解析 URL,返回其组成部分 array parse_url ( string $url [, int $component = -1 ] ) 本函数解析一个 URL 并返回一 ...

  7. 用CSS实现“表格布局”

    当我们进行浮动布局时,会发现存在着非浮动元素与浮动元素的底部难以对齐的情况,这就是浮动布局的缺陷.因此,过去的前端工作者曾利用<table>以实现"表格布局".因为表格 ...

  8. python基础8之自定义模块、if __name__==__main__:解释

    一.自定义模块与使用 python模块说明:类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...

  9. es6重点笔记:Symbol,Set,Map,Proxy,Reflect

    一,Symbol 原始数据类型,不是对象,它是JavaScript第七种数据类型,表示独一无二的值.Symbol是通过Symbol函数生成的: let s = Symbol(); typeof s / ...

  10. FormsAuthentication.HashPasswordForStoringInConfigFile 的替代方法

    由于项目中要和php对接,要将一段字符串生成md5(16位)验证码,在英文字符时,没有太大问题,但在遇到中文时,两边字条始终不一致. php是别人的项目,看不到源码,网上一查,估计是这样写的: < ...