传送门

题意:

染色图是无向完全图,且每条边可被染成k种颜色中的一种。
两个染色图是同构的,当且仅当可以改变一个图的顶点的编号,使得两个染色图完全相同。
问N个顶点,k种颜色,本质不同的染色图个数(模质数N≤53,P<109)。


想了一节课和一中午又看了课件

相同类型的循环合并的想法很巧妙

首先,点的置换对应唯一边的置换,我们可以枚举所有点的置换,找出每个置换下边置换的循环有多少个,然后套$Polya$公式

但是复杂度带叹号

我们发现,很多点置换类型是一样的,我们可以对$n$搜索划分来枚举点置换的类型(即每个循环的长度),然后找出这种类型的置换有多少个

设每个循环长度$L_1,L_2,...,L_n$,那么相同类型的置换就相当于每个循环做圆排列,然后消除循环长度相同的影响

$\frac{n!}{L_1 L_2...L_n s_1! s_2!...s_t!}$

$s$为相同的长度的个数

那么如何从点的置换得到边的置换?

同一个循环里的边,他们的循环个数为$\frac{L}{2}$,具体可以把点排成一个圈画图观察一下

两个循环之间的边,他们的循环长度为$LCM(L_1,L_2)$,共有$L_1*L_2$条边,则个数为$GCD(L_1,L_2)$

然后就可以做了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,m,P;
ll inv[N],fac[N],facInv[N];
void ini(){
inv[]=;fac[]=facInv[]=;
for(int i=;i<=n;i++){
if(i!=) inv[i]=-P/i*inv[P%i]%P;
if(inv[i]<) inv[i]+=P;
fac[i]=fac[i-]*i%P;
facInv[i]=facInv[i-]*inv[i]%P;
}
}
int L[N],tot;
ll sum,ans;
inline int gcd(int a,int b){return b== ? a : gcd(b,a%b);}
inline ll Pow(ll a,int b){
ll re=;
for(;b;b>>=,a=a*a%P)
if(b&) re=re*a%P;
return re;
}
inline void mod(ll &x){if(x>=P) x-=P;}
void dfs(int d,int now){
if(d==n){
int lo=;
ll cnt=fac[n],same=;
sort(L+,L++tot);
//printf("tot %d\n",tot);
//for(int i=1;i<=tot;i++) printf("%d ",L[i]);puts("\n end");
for(int i=;i<=tot;i++){
lo+=L[i]/;
for(int j=i+;j<=tot;j++) lo+=gcd(L[i],L[j]); cnt=cnt*inv[L[i]]%P;
if(i!=&&L[i]==L[i-]) same++;
else if(same!=) cnt=cnt*facInv[same]%P,same=;
}
if(same!=) cnt=cnt*facInv[same]%P;
//printf("hi %d %lld\n",lo,cnt);
mod(sum+=cnt);
mod(ans+=cnt%P*Pow(m,lo)%P);
//puts("\n");
}else{
for(int j=now;d+j<=n;j++){
L[++tot]=j;
dfs(d+j,j);
tot--;
}
}
}
int main(){
freopen("in","r",stdin);
n=read();m=read();P=read();
ini();
dfs(,);
//printf("%lld %lld\n",ans,sum);
ans=ans*Pow(sum,P-)%P;
printf("%lld",ans);
}

BZOJ 1815: [Shoi2006]color 有色图 [Polya DFS 重复合并]的更多相关文章

  1. bzoj 1815: [Shoi2006]color 有色图 置换群

    1815: [Shoi2006]color 有色图 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 136  Solved: 50[Submit][Stat ...

  2. bzoj 1478: Sgu282 Isomorphism && 1815: [Shoi2006]color 有色图【dfs+polya定理】

    参考 https://wenku.baidu.com/view/fee9e9b9bceb19e8b8f6ba7a.html?from=search### 的最后一道例题 首先无向完全图是个若干点的置换 ...

  3. BZOJ 1815: [Shoi2006]color 有色图(Polya定理)

    题意 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图. 如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得 ...

  4. BZOJ1815: [Shoi2006]color 有色图

    BZOJ1815: [Shoi2006]color 有色图 Description Input 输入三个整数N,M,P 1< = N <= 53 1< = M < = 1000 ...

  5. 洛谷 P4128: bzoj 1815: [SHOI2006]有色图

    题目传送门:洛谷 P4128. 计数好题,原来是 13 年前就出现了经典套路啊.这题在当年应该很难吧. 题意简述: \(n\) 个点的完全图,点没有颜色,边有 \(m\) 种颜色,问本质不同的图的数量 ...

  6. [SHOI2006]color 有色图[群论、组合计数]

    题意 用 \(m\) 种颜色,给 \(n\) 个点的无向完全图的 \(\frac{n(n-1)}{2}\) 条边染色,两种方案相同当且仅当一种方案交换一些点的编号后可以变成另一种方案.问有多少本质不同 ...

  7. 【BZOJ 1815】【SHOI 2006】color 有色图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1815 这道题好难啊,组合数学什么根本不会啊qwq 题解详见08年的Pólya计数论文. 主要思想是只 ...

  8. bzoj 1488: [HNOI2009]图的同构【polya定理+dfs】

    把连边和不连边看成黑白染色,然后就变成了 https://www.cnblogs.com/lokiii/p/10055629.html 这篇讲得好!https://blog.csdn.net/wzq_ ...

  9. [BZOJ 1082] [SCOI2005] 栅栏 【二分 + DFS验证(有效剪枝)】

    题目链接:BZOJ - 1082 题目分析 二分 + DFS验证. 二分到一个 mid ,验证能否选 mid 个根木棍,显然要选最小的 mid 根. 使用 DFS 验证,因为贪心地想一下,要尽量先用提 ...

随机推荐

  1. 跟我一起读postgresql源码(十二)——Executor(查询执行模块之——Materialization节点(下))

    接前文,我们继续说剩下的4个Materialization节点. 7.SetOp节点 SetOp节点用于处理集合操作,对应于SQL语句中的EXCEPT.INTERSECT两种集合操作,至于另一种集合操 ...

  2. vi 方向键和Backspace键失效问题的解决方法

    安装的ubuntu默认的编辑器是vi,遇到了两个问题: ① insert模式下,按方向键将产生A.B.C.D等字符,解决方案: :set nocompatible ② insert模式下Backspa ...

  3. SpringMVC整合Shiro权限框架

    尊重原创:http://blog.csdn.net/donggua3694857/article/details/52157313 最近在学习Shiro,首先非常感谢开涛大神的<跟我学Shiro ...

  4. UEP-保存

    uep的保存操作分为ajaxgrid和ajaxform两种方式 1.ajaxgrid public void storeInfoSave(){ try { //两个dataWrap 一个dataWra ...

  5. [国嵌笔记][025][ARM指令分类学习]

    算术和逻辑指令 1.mov 格式:mov {条件}{s} <dest>, <op> 作用:把一个值从一个地方移动到另一个地方,<dest>必须是寄存器 示例: @m ...

  6. ADO.NET复习总结(6)-断开式数据操作

    一.基础知识 主要类及成员(和数据库无关的)(1)类DataSet:数据集,对应着库,属性Tables表示所有的表(2)类DataTable:数据表,对应着表,属性Rows表示所有的行(3)类Data ...

  7. angular 选中切换面板

    此方法采用的是没有路由的方式: html5 代码: <div [hidden]="flag"> <li class="music-list-datail ...

  8. vue+springboot前后端分离实现单点登录跨域问题处理

    最近在做一个后台管理系统,前端是用时下火热的vue.js,后台是基于springboot的.因为后台系统没有登录功能,但是公司要求统一登录,登录认证统一使用.net项目组的认证系统.那就意味着做单点登 ...

  9. gRPC实战

    gRPC是Google开源的一款非常棒的系统间通信工具,完美的communication抽象,构建在protobuf之上的RPC. 下面我们聊聊它的应用场景,grpc为分布式系统而生,可以是系统间通信 ...

  10. VMware虚拟机上建立HTTP服务步骤

    1.使用xshell连接虚拟机,也可直接在虚拟机中敲命令. 以下是xshell上的命令: 首先安装HTTPD包 [root@one ~]# mount /dev/sr0 /mnt[root@one ~ ...