[LNOI 2014]LCA
Description
给出一个n个节点的有根树(编号为0到n-1,根节点为0)。一个点的深度定义为这个节点到根的距离+1。
设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先。
有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)]。
(即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和)
Input
第一行2个整数n q。
接下来n-1行,分别表示点1到点n-1的父节点编号。
接下来q行,每行3个整数l r z。
Output
输出q行,每行表示一个询问的答案。每个答案对201314取模输出
Sample Input
0
0
1
1
1 4 3
1 4 2
Sample Output
5
HINT
共5组数据,n与q的规模分别为10000,20000,30000,40000,50000。
题解
[HNOI 2015]开店的简化版。
//It is made by Awson on 2018.1.8
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define RE register
#define lowbit(x) ((x)&(-(x)))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
using namespace std;
const int N = ;
const int MOD = ;
const int INF = ~0u>>; int n, q, f, u, v, c, fa[N+], dep[N+], top[N+], cnt, size[N+], son[N+], pos[N+];
struct tt {
int to, next;
}edge[N+];
int path[N+], tot;
void add(int u, int v) {
edge[++tot].to = v;
edge[tot].next = path[u];
path[u] = tot;
}
struct Segment_tree {
int root[N+], sum[N*+], lazy[N*+], ch[N*][], pos;
int newnode(int r) {
int o = ++pos; sum[o] = sum[r], lazy[o] = lazy[r], ch[o][] = ch[r][], ch[o][] = ch[r][];
return o;
}
void update(int &o, int l, int r, int a, int b, int last) {
if (o <= last) o = newnode(o);
if (a <= l && r <= b) {
sum[o] += r-l+, sum[o] %= MOD, lazy[o]++; return;
}
int mid = (l+r)>>;
if (mid >= a) update(ch[o][], l, mid, a, b, last);
if (mid < b) update(ch[o][], mid+, r, a, b, last);
sum[o] = (sum[ch[o][]]+sum[ch[o][]]+(LL)lazy[o]*(r-l+)%MOD)%MOD;
}
int query(int o, int l, int r, int a, int b) {
if (!o) return ;
if (a <= l && r <= b) return sum[o];
int mid = (l+r)>>, c1 = , c2 = ;
if (mid >= a) c1 = query(ch[o][], l, mid, a, b);
if (mid < b) c2 = query(ch[o][], mid+, r, a, b);
return (c1+c2+(LL)lazy[o]*(Min(r, b)-Max(l, a)+)%MOD)%MOD;
}
}T;
void dfs1(int o, int father, int depth) {
fa[o] = father, dep[o] = depth+, size[o] = ;
for (int i = path[o]; i; i = edge[i].next) {
dfs1(edge[i].to, o, depth+);
size[o] += size[edge[i].to];
if (size[edge[i].to] > size[son[o]]) son[o] = edge[i].to;
}
}
void dfs2(int o, int tp) {
top[o] = tp, pos[o] = ++cnt;
if (son[o]) dfs2(son[o], tp);
for (int i = path[o]; i; i = edge[i].next)
if (edge[i].to != son[o]) dfs2(edge[i].to, edge[i].to);
}
void lca_update(int id, int o, int last) {while (top[o]) T.update(T.root[id], , n, pos[top[o]], pos[o], last), o = fa[top[o]]; }
int lca_query(int id, int o) {
int ans = ;
while (top[o]) ans += T.query(T.root[id], , n, pos[top[o]], pos[o]), ans %= MOD, o = fa[top[o]];
return ans;
}
void work() {
scanf("%d%d", &n, &q);
for (int i = ; i <= n; i++) scanf("%d", &f), add(f+, i);
dfs1(, , ), dfs2(, );
for (int i = ; i <= n; i++) {
T.root[i] = T.root[i-]; lca_update(i, i, T.pos);
}
while (q--) {
scanf("%d%d%d", &u, &v, &c);
printf("%d\n", (lca_query(v+, c+)-lca_query(u, c+)+MOD)%MOD);
}
}
int main() {
work();
return ;
}
[LNOI 2014]LCA的更多相关文章
- 解题:LNOI 2014 LCA
题面 这题有点意思 转化问题,我们把询问区间的点到根链加,再查询询问点到根的权值和就是每个询问的答案. 然后如果你数据结构没学傻只需要差分一下就可以扫一遍出解了 #include<cstdio& ...
- 【LNOI 2014】 LCA
[题目链接] 点击打开链接 [算法] 考虑求lca(x,y)的深度 我们可以将从根到x路径上的点都打上标记,然后,询问y到根上路径的权值和 那么,求sigma(depth(lca(i,z)))(l & ...
- bzoj 4012: [HNOI2015]开店
Description 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到 人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱.这样的 想法当然非常好啦,但是她们也发现 ...
- [GXOI/GZOI2019]旧词
很像LNOI 2014 LCA那道题. 同样的套路,离线以后直接扫描线. k=1的话就是原题. 考虑一般情况. 原本的做法是对x到根的这条链做一下区间+1操作,目的是为了是的在深度为i的位置得到的贡献 ...
- bzoj 4012: [HNOI2015]开店 主席树
Description 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到 人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱.这样的 想法当然非常好啦,但是她们也发现 ...
- BZOJ 5507: [gzoi2019]旧词 LCT
和之前那个 [LNOI]LCA 几乎是同一道题,就是用动态树来维护查分就行. code: #include <bits/stdc++.h> using namespace std; #de ...
- [HNOI2015]开店 简要题解
主席树. 推下式子,发现点的深度和好算,lca深度和不好算. lca深度之和有个套路:先给a到根路径+1,再算b到根的和. 如果可以离线,即LNOI的LCA.本题强制在线,可持久化. 由于区间修改,使 ...
- HDU_4912 Path on the tree 2014多校5 贪心+LCA
当时刚学LCA-tarjan不久,就比赛有这个题,但没想到还是没做出来..一开始以为是DP来着,没想到是贪心,想想也对,从树的最下层开始,每次遇到询问的点,就找到他们的LCA(路径里面必经LCA),然 ...
- LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA
非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...
随机推荐
- 海外仓系统 COD货到付款到付功能
全球还有很多国家买家网购选择货到付款方式,例如东南亚的越南.泰国.印度尼西亚,中东的阿联酋.沙特等国家.在这些国家建立海外仓需要需要具备COD货到付款功能,麦哲伦海外仓系统已经支持COD货到到付结算相 ...
- linux,windows,ubuntu下git安装与使用
ubuntu下git安装与使用:首先应该检查本地是否已经安装了git ,如果没有安装的话,在命令模式下输入 sudo apt-get install git 进行安装 输入git命令查看安装状态及常用 ...
- 实验三《Java面向对象程序设计》实验报告
20162308 实验三<Java面向对象程序设计>实验报告 实验内容 XP基础 XP核心实践 IDEA工具学习 密码学算法基础 实验步骤 (一)Refactor/Reformat使用 p ...
- org.apache.jasper.JasperException: The absolute uri: http://java.sun.com/jsp/jstl/core cannot be res
解决:web项目出现如上问题,据查是版本问题: JSTL 1.0 的声明是: <%@ taglib prefix="c" uri="http://java.sun. ...
- 201621123043 《Java程序设计》第3周学习总结
1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识点及知识点之间的联系.步骤如下: 1.1 写出你 ...
- 支付宝sdk集成,报系统繁忙 请稍后再试(ALI64)
移动快捷支付,往往需要集成支付宝的sdk,集成的过程相对简单,只要按照支付宝的文档,进行操作一般不会出问题. 下面主要说明一下,集成sdk后报"系统繁忙 请稍后再试(A ...
- centos 开放端口
1.修改文件/etc/sysconfig/iptables [root@zsq ~]# cd /etc/sysconfig/[root@zsq sysconfig]# vi iptables 文件内容 ...
- php实现单,双向链表,环形链表解决约瑟夫问题
传智播客PHP学院 韩顺平 PHP程序员玩转算法第一季 http://php.itcast.cn 聊天篇: 数学对我们编程来说,重不重要? 看你站在什么样的层次来说. 如果你应用程序开发,对数学要求 ...
- egg.js 的优缺点
egg.js 的优缺点 优点 所有的 web开发的点都考虑到了 agent 很有特色 文件夹规划到位 扩展能力优秀 缺点 最大的问题在于: 使用 loader 加载之后,失去了代码提示的能力 监控和运 ...
- Java 10 的 10 个新特性,将彻底改变你写代码的方式!
Java 9才发布几个月,很多玩意都没整明白,现在Java 10又快要来了.. 这时候我真尼玛想说:线上用的JDK 7 甚至JDK 6,JDK 8 还没用熟,JDK 9 才发布不久不知道啥玩意,JDK ...