Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 ≤ i ≤ N) in this array:

  1. The number at the ith position is divisible by i.
  2. i is divisible by the number at the ith position.

Now given N, how many beautiful arrangements can you construct?

Example 1:

Input: 2
Output: 2
Explanation:

The first beautiful arrangement is [1, 2]:

Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).

Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).

The second beautiful arrangement is [2, 1]:

Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).

Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.

Note:

  1. N is a positive integer and will not exceed 15.

这道题给了我们1到N,总共N个正数,然后定义了一种优美排列方式,对于该排列中的所有数,如果数字可以整除下标,或者下标可以整除数字,那么我们就是优美排列,让我们求出所有优美排列的个数。那么对于求种类个数,或者是求所有情况,这种问题通常要用递归来做,递归简直是暴力的不能再暴力的方法了。而递归方法等难点在于写递归函数,如何确定终止条件,还有for循环中变量的起始位置如何确定。那么这里我们需要一个visited数组来记录数字是否已经访问过,因为优美排列中不能有重复数字。我们用变量pos来标记已经生成的数字的个数,如果大于N了,说明已经找到了一组排列,结果res自增1。在for循环中,i应该从1开始,因为我们遍历1到N中的所有数字,如果该数字未被使用过,且满足和坐标之间的整除关系,那么我们标记该数字已被访问过,再调用下一个位置的递归函数,之后不要忘记了恢复初始状态,参见代码如下:

解法一:

class Solution {
public:
int countArrangement(int N) {
int res = ;
vector<int> visited(N + , );
helper(N, visited, , res);
return res;
}
void helper(int N, vector<int>& visited, int pos, int& res) {
if (pos > N) {
++res;
return;
}
for (int i = ; i <= N; ++i) {
if (visited[i] == && (i % pos == || pos % i == )) {
visited[i] = ;
helper(N, visited, pos + , res);
visited[i] = ;
}
}
}
};

上面的解法在N=4时产生的优美序列如下:

1 2 3 4
1 4 3 2
2 1 3 4
2 4 3 1
3 2 1 4
3 4 1 2
4 1 3 2
4 2 3 1

通过看上面的分析,是不是觉得这道题的本质其实是求全排列,然后在所有全排列中筛选出符合题意的排列。那么求全排列的另一种经典解法就是交换数组中任意两个数字的位置,来形成新的排列,参见代码如下:

解法二:

class Solution {
public:
int countArrangement(int N) {
vector<int> nums(N);
for (int i = ; i < N; ++i) nums[i] = i + ;
return helper(N, nums);
}
int helper(int n, vector<int>& nums) {
if (n <= ) return ;
int res = ;
for (int i = ; i < n; ++i) {
if (n % nums[i] == || nums[i] % n == ) {
swap(nums[i], nums[n - ]);
res += helper(n - , nums);
swap(nums[i], nums[n - ]);
}
}
return res;
}
};

上面的解法在N=4时产生的优美序列如下:

2 4 3 1
4 2 3 1
3 4 1 2
4 1 3 2
1 4 3 2
3 2 1 4
2 1 3 4
1 2 3 4

参考资料:

https://discuss.leetcode.com/topic/79916/java-solution-backtracking

https://discuss.leetcode.com/topic/79921/my-c-elegant-solution-with-back-tracking

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Beautiful Arrangement 优美排列的更多相关文章

  1. [LeetCode] Beautiful Arrangement II 优美排列之二

    Given two integers n and k, you need to construct a list which contains n different positive integer ...

  2. LeetCode Beautiful Arrangement II

    原题链接在这里:https://leetcode.com/problems/beautiful-arrangement-ii/description/ 题目: Given two integers n ...

  3. LeetCode Beautiful Arrangement

    原题链接在这里:https://leetcode.com/problems/beautiful-arrangement/description/ 题目: Suppose you have N inte ...

  4. [Swift]LeetCode526. 优美的排列 | Beautiful Arrangement

    Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is const ...

  5. 【LeetCode】526. Beautiful Arrangement 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  6. LC 667. Beautiful Arrangement II

    Given two integers n and k, you need to construct a list which contains n different positive integer ...

  7. 526. Beautiful Arrangement

    Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is const ...

  8. LeetCode:下一个排列【31】

    LeetCode:下一个排列[31] 题目描述 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排 ...

  9. LeetCode:字符串的排列【567】

    LeetCode:字符串的排列[567] 题目描述 给定两个字符串 s1 和 s2,写一个函数来判断 s2 是否包含 s1 的排列. 换句话说,第一个字符串的排列之一是第二个字符串的子串. 示例1: ...

随机推荐

  1. python全栈开发-Day9 函数对象、函数嵌套、名称空间与作用域

    一 .函数对象 一 .函数是第一类对象,即函数可以当作数据传递 可以被引用 可以当作参数传递 返回值可以是函数 可以当作容器类型的元素 二. 利用该特性,优雅的取代多分支的if def foo(): ...

  2. Loadrunner使用时IE浏览器打不开怎么办

    1.ie浏览器去掉启用第三方浏览器扩展 2.loadrunner11 键盘F4,在browser Emulation点击change,在弹出的提示框中Browser version 选择8.0,pla ...

  3. maven的使用(基础1)

    这是我第一次写博客,这个想法源于我的师傅对我的建议,一是与大家一起进步,二是让自己养成总结的好习惯. "如果你步入的maven的世界,你便打开了Java的另一扇大门". 这篇文章是 ...

  4. Docker深入浅出系列教程——Docker简介

    我是架构师张飞洪,钻进浩瀚代码,十年有余,人不堪其累,吾不改其乐.如果你和我的看法不一样,请关注我的头条号,我们一起奇闻共赏,疑义相析. 本节属于入门简介,从三个小方面进行简单介绍Docker. Do ...

  5. 『转载』从内存资源中加载C++程序集:CMemLoadDll

    MemLoadDll.h #if !defined(Q_OS_LINUX) #pragma once typedef BOOL (__stdcall *ProcDllMain)(HINSTANCE, ...

  6. 网络1712--c语言嵌套循环作业总结

    1.助教有话说 首先,每周一篇的博客作业是很有必要的:编程的过程不仅仅是会敲几行代码.能够通过PTA就大吉大利了,你更应该做到的是梳理代码思路,通过与他人代码思路的比对,取其精华,进而不断进阶,才能逐 ...

  7. 201621123062《java程序设计》第11周作业总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 思维导图: 2. 书面作业 本次PTA作业题集多线程 2.1. 源代码阅读:多线程程序BounceThread 2 ...

  8. 敏捷冲刺每日报告三(Java-Team)

    第三天报告(10.27  周五) 团队:Java-Team 成员: 章辉宇(284) 吴政楠(286) 陈阳(PM:288) 韩华颂(142) 胡志权(143) github地址:https://gi ...

  9. 201621123043《java程序设计》第4周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键字:继承.覆盖.多态 1.2 尝试使用思维导图将这些关键词组织起来.注:思维导图一般不需要出现过多的字. 1.3 可选:使用 ...

  10. 用java写一个servlet,可以将放在tomcat项目根目录下的文件进行下载

    用java写一个servlet,可以将放在tomcat项目根目录下的文件进行下载,将一个完整的项目进行展示,主要有以下几个部分: 1.servlet部分   Export 2.工具类:TxtFileU ...