[HAOI 2009]逆序对数列
Description
Input
第一行为两个整数n,k。
Output
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。
Sample Input
Sample Output
HINT
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
100%的数据 n<=1000,k<=1000
题解
注意到逆序对的话,我们只在乎他们的相对数值,而不是具体是多少。
我们定义状态$f[i][j]$表示长度为$i$的排列,逆序对个数为$j$的方案数,显然我们转移的时候,考虑的是第$i$个数放在哪。
值得注意的是,这个数显然比之前的所有数都要大。即,我将$i$放在$i-j$的位置上,我将新获得$j$个逆序对。
我们容易想到$O(n^3)$的转移:
$$f[i][j] = {\sum_{k = 0}^{min(i-1, j)} f[i-1][j-k]}$$
边界情况是$f[1][0] = 1$。
$TLE$怎么办?前缀和优化一下就好了。
//It is made by Awson on 2017.10.18
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Abs(x) ((x) < 0 ? (-(x)) : (x))
using namespace std;
const int N = ;
const int MOD = ; int f[N+][N+], n, m;
int sum[N+]; void work() {
scanf("%d%d", &n, &m); f[][] = sum[] = ;
for (int i = ; i <= m; i++) sum[i] = sum[i-]+f[][i];
for (int i = ; i <= n; i++) {
for (int j = ; j <= m; j++) {
(f[i][j] += sum[j]) %= MOD;
if (Min(i-, j) > ) (f[i][j] -= sum[j-Min(i-, j)-]) %= MOD;
}
for (int j = ; j <= m; j++) sum[j] = sum[j-]+f[i][j];
}
printf("%d\n", (f[n][m]+MOD)%MOD);
}
int main() {
work();
return ;
}
[HAOI 2009]逆序对数列的更多相关文章
- bzoj2431:[HAOI2009]逆序对数列
单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- 2431: [HAOI2009]逆序对数列
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 954 Solved: 548[Submit][Status ...
- 【BZOJ2431】逆序对数列(动态规划)
[BZOJ2431]逆序对数列(动态规划) 题面 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组 ...
- P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- 洛谷P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
随机推荐
- JQuery操作option的添加、删除、取值
1. $("#select_id").change(function(){//code...}); //为Select添加事件,当选择其中一项时触发 2. var checkTex ...
- Jquery($第一天)【历史】
一.什么是jQueryjQuery是一个JavaScript库,它通过封装原生的JavaScript函数得到一整套定义好的方法.它的作者是John Resig,于2006年创建的一个开源项目,随着越来 ...
- JAVA委托事件处理机制
1)事件:用户对程序的某一种功能性操作. Java中的事件主要有两种: 1.组件类事件 componentEvent.ContainerEvent.WindowEvent.FocusEvent.Pai ...
- Visual Studio Code初识与自动化构建工具安装
1.Visual Studio Code如何新建文件夹 要自己手动在本地新建,然后再点击文件->打开文件夹即可. 之后你就可以任意添加文件了 2.如何使用自动化构建工具 通过自动化构建工具,用户 ...
- LeetCode & Q283-Move Zeroes-Easy
Array Two Pointers Description: Given an array nums, write a function to move all 0's to the end of ...
- c#+wpf项目性能优化之OutOfMemoryException解密
近期,使用c#+wpf开发的软件准备正式投入使用了,使用前进行了大量的测试,测试后发现了一些问题,其中最让人头疼的就是软件的性能问题(稳定性). 这里的稳定性具体表现在机器的cpu占有率和内存使用情况 ...
- ORM “杀器”之 JOOQ
ORM “杀器”之 JOOQ IN 后端编程,JAVA,敏捷开发,数据库 JOOQ是啥? JOOQ 是基于Java访问关系型数据库的工具包,轻量,简单,并且足够灵活,可以轻松的使用Java面向对象语法 ...
- gradle入门(1-8)gradle 的依赖查看、依赖排除和指定版本(需要验证!)
一.依赖查看 gradle dependencies 在gradle dependencies输出会有如下几种标记: 1.版本 : 唯一的依赖. 2.版本():还存在该库其他版本的依赖或者间接依赖,并 ...
- Spring Security入门(3-9)Spring Security登录成功以后
- python全栈开发-hashlib模块(数据加密)、suprocess模块、xml模块
一.hashlib模块 1.什么叫hash:hash是一种算法(3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法 ...