Description

题库链接

给出平面上 \(n\) 个点,选出四个点作为矩形顶点。求出矩形最大面积。

\(1\leq n\leq 1500\)

Solution

转载自 Z-Y-Y-S dark♂菜鸡

两条线段能作于矩形的对角线有 \(2\) 个条件:

  1. 中点相同
  2. 长度相同

于是 \(O(n^2)\) 处理出所有直线,排序,找到满足条件的区间,枚举得出答案。

复杂度有点玄学。

Code

//It is made by Awson on 2018.3.13
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 1500;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, tot, x[N+5], y[N+5]; LL ans;
struct tt {
int idx, idy; LL x, y, l;
tt(int _idx = 0, int _idy = 0, LL _x = 0, LL _y = 0, LL _l = 0) {
idx = _idx, idy = _idy, x = _x, y = _y, l = _l;
}
bool operator < (const tt &b) const {
if (x != b.x) return x < b.x;
if (y != b.y) return y < b.y;
return l < b.l;
}
}a[N*N]; LL dist(int a, int b) {return 1ll*(y[a]-y[b])*(y[a]-y[b])+1ll*(x[a]-x[b])*(x[a]-x[b]); }
LL square(int a, int b, int c) {return Abs(1ll*(y[b]-y[a])*(x[c]-x[a])-1ll*(y[c]-y[a])*(x[b]-x[a])); }
void work() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d%d", &x[i], &y[i]);
for (int i = 1; i <= n; i++)
for (int j = i+1; j <= n; j++)
a[++tot] = tt(i, j, x[i]+x[j], y[i]+y[j], dist(i, j));
sort(a+1, a+tot+1);
for (int i = 1, last; i < tot; i = last+1) {
last = i;
while (a[i].x == a[last+1].x && a[i].y == a[last+1].y && a[i].l == a[last+1].l && last < tot) ++last;
for (int j = i; j <= last; j++)
for (int k = j+1; k <= last; k++)
ans = max(ans, square(a[j].idx, a[j].idy, a[k].idx));
}
writeln(ans);
}
int main() {
work(); return 0;
}

[HNOI 2011]数矩形的更多相关文章

  1. bzoj-2338 2338: [HNOI2011]数矩形(计算几何)

    题目链接: 2338: [HNOI2011]数矩形 Time Limit: 20 Sec  Memory Limit: 128 MB Description Input   Output 题意: 思路 ...

  2. 数矩形(N - 暴力求解、打表)

    数矩形 Description 给你一个高为n ,宽为m列的网格,计算出这个网格中有多少个矩形,下图为高为2,宽为4的网格.            Input 第一行输入一个t, 表示有t组数据,然后 ...

  3. bzoj2338[HNOI2011]数矩形 计算几何

    2338: [HNOI2011]数矩形 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1535  Solved: 693[Submit][Status ...

  4. 【题解】Luogu P3217 [HNOI2011]数矩形

    原题链接:P3217 [HNOI2011]数矩形 什么??!怎么又是计算几何,您钛毒瘤了-- 这道题真的是毒瘤 凸包?旋转卡壳? 看一下数据,N<=1500? 暴力 没错,就是暴力,N^2没毛病 ...

  5. 【BZOJ2338】【HNOI2011】数矩形 [计算几何]

    数矩形 Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 最近某歌手在研究自己的全国巡回演出, ...

  6. bzoj2338数矩形(rectangle)

    数矩形(rectangle) 计算几何 把所有点两两连线,把这些线按长度排序,再按中点排序 能组成矩形的线一定是连续的 最坏就是所有点围成一个圆,交于圆心 复杂度O(可以过) 要用叉积,不然会被卡精 ...

  7. cogs 1901. [国家集训队2011]数颜色

    Cogs 1901. [国家集训队2011]数颜色 ★★★   输入文件:nt2011_color.in   输出文件:nt2011_color.out   简单对比时间限制:0.6 s   内存限制 ...

  8. 【BZOJ2338】[HNOI2011]数矩形 几何

    [BZOJ2338][HNOI2011]数矩形 题解:比较直观的做法就是枚举对角线,两个对角线能构成矩形当且仅当它们的长度和中点相同,然后用到结论:n个点构成的矩形不超过n^2.5个(不会证),所以两 ...

  9. luogu P3217 [HNOI2011]数矩形

    LINK:数矩形 题意:给出n个点 求出一个最大的矩形. 矩形可以使斜着的.(不会告诉你样例我算了几年 这道题的一个潜规则 矩形面积都是整数 我也不知道为啥一定是整数 姑且是题目输出的要求吧. 所以用 ...

随机推荐

  1. C#添加背景音乐

    <MediaElement Name="audio"/> <Button Name="music" Content="点我有音乐哦& ...

  2. 如何在jenkins上新建一个项目及其简单配置

    1.首先,点击[新建]进入选择页面,如下图(一般选择"构建一个自由风格的软件项目")     2.填好项目名称后,点击ok,跳转至如下页面,可以在这个页面进行项目的配置(包括拉源码 ...

  3. Welcome to StackEdit!

    Welcome to StackEdit! Hey!our first Markdown document in StackEdit1. Don't delete me, I'm very helpf ...

  4. Beta阶段敏捷冲刺报告-DAY4

    Beta阶段敏捷冲刺报告-DAY4 Scrum Meeting 敏捷开发日期 2017.11.5 会议时间 11:30 会议地点 羽毛球场 参会人员 全体成员 会议内容 bug的原因讨论, 测试内容安 ...

  5. 详解JavaScript对象继承方式

    一.对象冒充 其原理如下:构造函数使用 this 关键字给所有属性和方法赋值(即采用类声明的构造函数方式).因为构造函数只是一个函数,所以可使 Parent 构造函数成为 Children 的方法,然 ...

  6. c 语言常量

    1,整数常量 整数常量可以是十进制.八进制或十六进制的常量.前缀指定基数:0x 或 0X 表示十六进制,0 表示八进制,不带前缀则默认表示十进制. 整数常量也可以带一个后缀,后缀是 U 和 L 的组合 ...

  7. Python 黑客相关电子资源和书籍推荐

    原创 2017-06-03 玄魂工作室 玄魂工作室 继续上一次的Python编程入门的资源推荐,本次为大家推荐的是Python网络安全相关的资源和书籍. 在去年的双11送书的时候,其实送过几本Pyth ...

  8. URL编码和Base64编码 (转)

    我们经常会遇到所谓的URL编码(也叫百分号编码)和Base64编码.      先说一下Bsae64编码.BASE64编码是一种常用的将二进制数据转换为64个可打印字符的编码,常用于在通常处理文本数据 ...

  9. 小tip: 使用CSS将图片转换成黑白(灰色、置灰)

    可能早就知道,像汶川这种糟糕的日子网站全灰在IE下是可以轻松实现的(filter: gray;),不过,当时,其他浏览器是无解的.不过,时代发展,如今,CSS3的逐步推进,我们也开始看到“黑白效果”大 ...

  10. Mac里安装Jmeter

    前提是需要安装jdk,参见http://www.cnblogs.com/fun0623/p/4703456.html 1.解压包 (双击apache-jmeter-2.13) 2.进去到解压后的bin ...