Given an m * n matrix M initialized with all 0's and several update operations.

Operations are represented by a 2D array, and each operation is represented by an array with two positive integers a and b, which means M[i][j] should be added by one for all 0 <= i < a and 0 <= j < b.

You need to count and return the number of maximum integers in the matrix after performing all the operations.

Example 1:

Input:
m = 3, n = 3
operations = [[2,2],[3,3]]
Output: 4
Explanation:
Initially, M =
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]] After performing [2,2], M =
[[1, 1, 0],
[1, 1, 0],
[0, 0, 0]] After performing [3,3], M =
[[2, 2, 1],
[2, 2, 1],
[1, 1, 1]] So the maximum integer in M is 2, and there are four of it in M. So return 4.

Note:

  1. The range of m and n is [1,40000].
  2. The range of a is [1,m], and the range of b is [1,n].
  3. The range of operations size won't exceed 10,000.

这道题看起来像是之前那道 Range Addition 的拓展,但是感觉实际上更简单一些。每次在 ops 中给定我们一个横纵坐标,将这个子矩形范围内的数字全部自增1,让我们求最大数字的个数。原数组初始化均为0,那么如果 ops 为空,没有任何操作,那么直接返回 m*n 即可,我们可以用一个优先队列来保存最大数字矩阵的横纵坐标,我们可以通过举些例子发现,只有最小数字组成的边界中的数字才会被每次更新,所以我们想让最小的数字到队首,更优先队列的排序机制是大的数字在队首,所以我们对其取相反数,这样我们最后取出两个队列的队首数字相乘即为结果,参见代码如下:

解法一:

class Solution {
public:
int maxCount(int m, int n, vector<vector<int>>& ops) {
if (ops.empty() || ops[].empty()) return m * n;
priority_queue<int> r, c;
for (auto op : ops) {
r.push(-op[]);
c.push(-op[]);
}
return r.top() * c.top();
}
};

我们可以对空间进行优化,不使用优先队列,而是每次用 ops 中的值来更新m和n,取其中较小值,这样遍历完成后,m和n就是最大数矩阵的边界了,参见代码如下:

解法二:

class Solution {
public:
int maxCount(int m, int n, vector<vector<int>>& ops) {
for (auto op : ops) {
m = min(m, op[]);
n = min(n, op[]);
}
return m * n;
}
};

类似题目:

Range Addition

参考资料:

https://leetcode.com/problems/range-addition-ii/

https://leetcode.com/problems/range-addition-ii/discuss/103595/Java-Solution-find-Min

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Range Addition II 范围相加之二的更多相关文章

  1. [LeetCode] 598. Range Addition II 范围相加之二

    Given an m * n matrix M initialized with all 0's and several update operations. Operations are repre ...

  2. LeetCode Range Addition II

    原题链接在这里:https://leetcode.com/problems/range-addition-ii/description/ 题目: Given an m * n matrix M ini ...

  3. [LeetCode] Range Addition 范围相加

    Assume you have an array of length n initialized with all 0's and are given k update operations. Eac ...

  4. 【leetcode_easy】598. Range Addition II

    problem 598. Range Addition II 题意: 第一感觉就是最小的行和列的乘积即是最后结果. class Solution { public: int maxCount(int ...

  5. LeetCode: 598 Range Addition II(easy)

    题目: Given an m * n matrix M initialized with all 0's and several update operations. Operations are r ...

  6. 598. Range Addition II 矩阵的范围叠加

    [抄题]: Given an m * n matrix M initialized with all 0's and several update operations. Operations are ...

  7. LeetCode 598. Range Addition II (范围加法之二)

    Given an m * n matrix M initialized with all 0's and several update operations. Operations are repre ...

  8. 【LeetCode】598. Range Addition II 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  9. LeetCode算法题-Range Addition II(Java实现)

    这是悦乐书的第271次更新,第285篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第138题(顺位题号是598).给定一个m行n列的新二维数组M,其初始值为0.提供一个二 ...

随机推荐

  1. php设计模式八-----装饰器模式

    1.介绍: 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构.这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装. 这种模式创建了一个装饰 ...

  2. Java基础学习笔记二 Java基础语法

    注释 注释用来解释和说明程序的文字,注释是不会被执行的. 单行注释 //这是一条单行注释 public int i; 多行注释 /* 这是 * 一段注释, * 它跨越了多个行 */ public vo ...

  3. 2018最新版本Sublime Text3注册码(仅供测试交流使用)

    -– BEGIN LICENSE -– TwitterInc 200 User License EA7E-890007 1D77F72E 390CDD93 4DCBA022 FAF60790 61AA ...

  4. Python变量赋值的秘密

    在Python中,我们令一个变量等于另外一个变量时,并不是把值传递给它,而是直接把指向的地址更改了.我们想要查看一个变量在内存中的地址,可以通过id(变量) 来查看.我们通过一个小例子来看看这个有趣的 ...

  5. alpha冲刺第六天

    一.合照 二.项目燃尽图 三.项目进展 主界面首页内容呈现 我的栏目之我的问题完成 我的栏目之我的提问完成 还是插不进去,然后打算先放一放,一直在一个地方纠结那么久脑子太乱 四.明日规划 问答界面问题 ...

  6. Spring MVC Restful Put方法无法获取参数值

    Spring MVC Restful 无法通过@ReqeustParam获取参数值 原因是Tomcat只支持POST/GET获取参数值,对于PUT这些方法需要通过HttpPutFormContentF ...

  7. [USACO4.1]麦香牛块Beef McNuggets

    https://www.luogu.org/problemnew/show/P2737 给出n个数ai,求这n个数不能累加出的最大的数 最大的数无限大或能凑出所有的自然数则输出0 n<=10,a ...

  8. border 三角形 有边框的 东西南北的 气泡三角形

    链接地址:http://www.cnblogs.com/blosaa/p/3823695.html

  9. JAVA_SE基础——49.多态的应用

    因为多态对以后开发的重要性,因此我在这里专门开个多态的应用来加深讲解,希望想弄懂多态的同学能耐心看完. 了解了对象多态性后,那么这多态到底有哪些用处了? 下面要求设计一个方法,要求此方法可以接受A类的 ...

  10. JAVA_SE基础——编码规范&代码编写规则

    这次我来给大家说明下编码规范&代码编写规则  ↓ 编码规范可以帮助程序员在编程时注意一些细节问题,提高程序的可读性,让程序员能够尽快地理解新的代码,并帮助大家编写出规范的利于维护的Java代码 ...