【LG5504】[JSOI2011]柠檬
【LG5504】[JSOI2011]柠檬
题面
题解
考虑\(dp\),令\(f_i\)表示\(dp\)到第\(i\)位且在第\(i\)位分段的最大值。
我们令题面中的\(s_i\)为\(a_i\),那么对于一个转移点\(j\),显然\(a_i=a_j\),因为多余的颜色肯定无法产生贡献,不如不选。
令\(c_i\)为位置\(i\)的颜色第几次出现。
那么有转移方程:
\]
推下式子:
\Leftrightarrow f_{j-1}+a_j(c_j-1)^2=2a_ic_i(c_j-1)+f_i-a_ic_i^2
\]
将这个式子看作一个一次函数\(y=kx+b\),那么在这个式子中,\(y=f_{j-1}+a_j(c_j-1)^2,x=c_j-1,k=2a_ic_i,b=f_i-a_ic_i^2\)。
要使\(f_i\)尽量大,则\(b\)要尽量大,所以对于\((x,y)\)我们维护相邻两点斜率递减的上凸壳。
而对于同种颜色,它的斜率\(k\)必是递增的,所以由斜率优化的那套理论,相邻两点斜率小于\(k\)的那一段我们不需要,又因为凸壳上斜率递减,那么我们对每种颜色直接维护单调栈,每次取栈顶即为答案。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 1e5 + 5;
int N, a[MAX_N], c[MAX_N], bln[MAX_N];
long long f[MAX_N], X[MAX_N], Y[MAX_N];
long double slope(int i, int j) {
return (long double)(Y[j] - Y[i]) / (X[j] - X[i]);
}
vector<int> q[MAX_N];
int top[MAX_N], mx;
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
N = gi();
for (int i = 1; i <= N; i++) c[i] = ++bln[a[i] = gi()], mx = max(mx, a[i]);
for (int i = 1; i <= mx; i++) q[i].push_back(0), top[i] = 0;
for (int i = 1; i <= N; i++) {
int col = a[i];
while (top[col] && slope(q[col][top[col] - 1], q[col][top[col]])
<= slope(q[col][top[col]], i)) --top[col];
if ((int)q[col].size() == ++top[col]) q[col].push_back(i);
else q[col][top[col]] = i;
while (top[col] && slope(q[col][top[col] - 1], q[col][top[col]]) <= 2.0 * a[i] * c[i]) --top[col];
int j = q[col][top[col]];
f[i] = f[j - 1] + 1ll * col * (c[i] - c[j] + 1) * (c[i] - c[j] + 1);
X[i + 1] = c[i + 1] - 1, Y[i + 1] = f[i] + 1ll * a[i + 1] * (c[i + 1] - 1) * (c[i + 1] - 1);
}
printf("%lld\n", *max_element(&f[1], &f[N + 1]));
return 0;
}
【LG5504】[JSOI2011]柠檬的更多相关文章
- bzoj4709: [Jsoi2011]柠檬 斜率优化
题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...
- 4709: [Jsoi2011]柠檬
4709: [Jsoi2011]柠檬 https://www.lydsy.com/JudgeOnline/problem.php?id=4709 分析: 决策单调性+栈+二分. 首先挖掘性质:每个段选 ...
- 【BZOJ】4709: [Jsoi2011]柠檬
4709: [Jsoi2011]柠檬 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 779 Solved: 310[Submit][Status][ ...
- 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈
[BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...
- 笔记-[JSOI2011]柠檬
笔记-[JSOI2011]柠檬 [JSOI2011]柠檬 \(f_i\) 表示到第 \(i\) 只贝壳最多可以换得的柠檬数. 令 \(c_i=\sum_{h=1}^i[s_h=s_i]\). \[\b ...
- bzoj4709 [jsoi2011]柠檬
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...
- 【bzoj4709】[Jsoi2011]柠檬 斜率优化
题目描述 给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值.求最大总价值. $n\le 10^5$ . 输入 第 1 行:一 ...
- BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...
- bzoj 4709: [Jsoi2011]柠檬
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...
随机推荐
- Mac PyCharm激活/激活码
此教程实时更新,请放心使用:如果有新版本出现猪哥都会第一时间尝试激活: pycharm官网下载地址:http://www.jetbrains.com/pycharm/download/ 激活前准备工作 ...
- CycleBarrier与CountDownLatch原理
CountDownLatch 众所周知,它能解决一个任务必须在其他任务完成的情况下才能执行的问题,代码层面来说就是只有计数countDown到0的时候,await处的代码才能继续向下运行,例如: im ...
- 基础知识---IEnumerable、ICollection、IList、IQueryable
一.定义 IEnumerable public interface IEnumerable<out T> : IEnumerable ICollection public interfac ...
- 图解微信小程序---实现行的删除和增加操作
图解微信小程序之实现行的删除和增加操作 代码笔记部分 第一步:在项目的app.json中创建一个新的页面(页面名称英文,可自定义) 第二步:在创建的新页面中编写页面(注意bindtap属性值,因为是我 ...
- USE11 上oracle11导入数据中文乱码
分类专栏: 数据库 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/suqimm/artic ...
- C# vb .NET识别读取QR二维码
二维码比条形码具有更多优势,有些场合使用二维码比较多,比如支付.那么如何在C#,.Net平台代码里读取二维码呢?答案是使用SharpBarcode! SharpBarcode是C#快速高效.准确的条形 ...
- delegate里的Invoke和BeginInvoke
Invoke和BeginInvoke都是调用委托实体的方法,前者是同步调用,即它运行在主线程上,当Invode处理时间长时,会出现阻塞的情况,而BeginInvod是异步操作,它会从新开启一个线程,所 ...
- 隐马尔科夫模型(Hidden Markov Models) 系列之五
转自:http://blog.csdn.net/eaglex/article/details/6458541 维特比算法(Viterbi Algorithm) 找到可能性最大的隐藏序列 通常我们都有一 ...
- PhoneGap架构基础及工作原理介绍
转自:http://mobile.51cto.com/others-308545.htm 本篇文章从PhoneGap由来.功能以及工作原理,力争由浅入深介绍PhoneGap框架. 为什么需要Pho ...
- token安全之任意密码重置
前言 偶然间挖了一个漏洞是密码重置,挖掘过程很有趣,可以参考下. 挖掘过程 在说明之前我们可以先走下正常流程,这样才方便查漏~ 正常流程 第一步骤: 正常填写完,点击下一步发送请求: POST /[U ...