ARC093F Dark Horse 【容斥,状压dp】
题目链接:gfoj
神仙计数题。
可以转化为求\(p_1,p_2,\ldots,p_{2^n}\),使得\(b_i=\min\limits_{j=2^i+1}^{2^{i+1}}p_j\)都不属于\(a_i\)。
日常容斥。设\(f(S)\)表示\(i\in S\Rightarrow b_i\in A\)的答案,则答案就是\(ans=\sum_S(-1)^{|S|}f(S)\)。
求\(f(S)\)使用状压dp。设\(f[i][S]\)表示将\(a_i\)从大到小排序,\(b_i\)在\(a\)中出现的下标\(i\)组成的集合\(S\),方案数是多少。
初值\(f[0][0] = 1\)。
如果\(a_{i+1}\)不在\(b_i\)中出现,则\(f[i+1][S]\leftarrow f[i][S]\)。
如果\(a_{i+1}\)在\(b_i\)中出现,枚举\(a_{i+1}=b_k\),那么我们要在\(2^n-S-a_i\)个数中选出\(2^k-1\)个数被\(a_{i+1}\)打掉,组成排列\((2^k)!\)种方案,那么\(f[i+1][S|2^k]\leftarrow f[i][S]\times \dbinom{2^n-S-a_i}{2^k-1}\times (2^k)!\)。
然后你发现我们并没有把不在\(b_i\)中出现的\(S\)这些数没有乘上,所以\(f(S)=f[m][S]\times S!\)。然后抄个柿子上去,时间复杂度\(O(nm2^n)\)。
code
```cpp
#include
#define Rint register int
using namespace std;
typedef long long LL;
const int N = 16, mod = 1e9 + 7;
int n, m, a[N], f[N + 1][1 = mod) a -= mod;}
inline int kasumi(int a, int b){
int res = 1;
while(b){
if(b & 1) res = (LL) res * a % mod;
a = (LL) a * a % mod; b >>= 1;
}
return res;
}
inline void init(int m){
fac[0] = 1;
for(Rint i = 1;i ()); init((1 > k) & 1))
upd(f[i + 1][S | (1
ARC093F Dark Horse 【容斥,状压dp】的更多相关文章
- ARC 093 F Dark Horse 容斥 状压dp 组合计数
LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任 ...
- bzoj2669[cqoi2012]局部极小值 容斥+状压dp
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 774 Solved: 411[Submit][Status ...
- Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)
Atcoder 题面传送门 & 洛谷题面传送门 常规题,简单写写罢((( 首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \ ...
- [BZOJ2669][CQOI2012]局部最小值(容斥+状压DP)
发现最多有8个限制位置,可以以此为基础DP和容斥. $f_{i,j}=f_{i-1,j}\times (cnt_j-i+1)+\sum_{k\subset j} f_{i-1,k}$ $cnt_j$表 ...
- bzoj3812 主旋律 容斥+状压 DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3812 题解 考虑对于图的联通性的 DP 的一般套路:总方案 - 不连通的方案. 那么我们只需要 ...
- Comet OJ - Contest #7 C 临时翻出来的题(容斥+状压)
题意 https://www.cometoj.com/contest/52/problem/C?problem_id=2416 思路 这里提供一种容斥的写法(?好像网上没看到这种写法) 题目要求编号为 ...
- ARC093 F Dark Horse——容斥
题目:https://atcoder.jp/contests/arc093/tasks/arc093_d #include<cstdio> #include<cstring> ...
- HDU5731 Solid Dominoes Tilings 状压dp+状压容斥
题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hiho ...
- BZOJ 2560: 串珠子 (状压DP+枚举子集补集+容斥)
(Noip提高组及以下),有意者请联系Lydsy2012@163.com,仅限教师及家长用户. 2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MB Su ...
随机推荐
- Calico网络模型
由于两台物理机的容器网段不同,我们完全可以将两台物理机配置成为路由器,并按照容器的网段配置路由表. 在物理机A中,我们可以这样配置:要想访问网段172.17.9.0/24,下一跳是192.168.10 ...
- navicat连接mysql出现2059
1.找到mysql的目录:C:\Program Files\MySQL\MySQL Server 8.0\bin 2.清空此目录,输入cmd,回车 3.在控制台输入:mysql -u root -p ...
- JS基础理论相关知识
1.XHTML和HTML有什么区别 HTML是一种基本的WEB网页设计语言,XHTML是一个基于XML的置标语言最主要的不同:XHTML 元素必须被正确地嵌套.XHTML 元素必须被关闭.标签名必须用 ...
- 【转】Flex 布局教程:语法篇
作者: 阮一峰 日期: 2015年7月10日 网页布局(layout)是 CSS 的一个重点应用. 布局的传统解决方案,基于盒状模型,依赖 display 属性 + position属性 + floa ...
- ABAP-System Functions
ABAP_CALLSTACK ABAP_CRC64 ABAP_PRECOMPILED_HEADER_USAGE ABSTOR_TEST AB_CALL_LITL_CHECK AB_CALL_STACK ...
- Hive中的HiveServer2、Beeline及数据的压缩和存储
1.使用HiveServer2及Beeline HiveServer2的作用:将hive变成一种server服务对外开放,多个客户端可以连接. 启动namenode.datanode.resource ...
- 一道经典面试题,atoi函数的实现
参考资料 (1)atoi函数的实现 (2)<剑指offer> 题目分析 本题需要注意的有几个方面: (1)检查输入参数,指针是否为NULL: (2)去除字符串前面的空格 (3)处理正负符号 ...
- idea之将Maven的jar包安装到本地仓库
1.问题概要 很多时候,我们需要应用第三方的jar包,但是这个jar包,在maven远程仓库里面没有, 比如我们要使用京东的sdk,但这个sdk在maven的远程仓库中没有,于是我们需要将这个jar包 ...
- 【技巧】如何使用客户端发布BLOG+如何快速发布微信公众号文章
[技巧]如何使用客户端发布BLOG+如何快速发布微信公众号文章 1 BLOG文档结构图 2 前言部分 2.1 导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也 ...
- js 动态创建 全局变量(转载)
转载来源 https://blog.csdn.net/stevenzhong900610/article/details/40857087 https://www.jb51.net/article/8 ...