题目链接

题意翻译

输入2 个长度不大于250000的字符串,输出这2 个字符串的最长公共子串。如果没有公共子串则输出0 。

思路

求两个串的最长公共子串

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 500010
using namespace std; int n, n1, n2; char s1[maxn], s2[maxn], s[maxn]; int tax[maxn], rk[maxn], tp[maxn], sa[maxn], M = 200;
void rsort() {
for (int i = 0; i <= M; ++i) tax[i] = 0;
for (int i = 1; i <= n; ++i) ++tax[rk[i]];
for (int i = 1; i <= M; ++i) tax[i] += tax[i - 1];
for (int i = n; i; --i) sa[tax[rk[tp[i]]]--] = tp[i];
} int H[maxn];
void SA() {
for (int i = 1; i <= n; ++i) rk[i] = s[i], tp[i] = i;
int c1 = 0; rsort();
for (int k = 1; k <= n; k *= 2) {
if (c1 == n) break; M = c1; c1 = 0;
for (int i = n - k + 1; i <= n; ++i) tp[++c1] = i;
for (int i = 1; i <= n; ++i) if (sa[i] > k) tp[++c1] = sa[i] - k;
rsort(); swap(tp, rk); rk[sa[1]] = c1 = 1;
for (int i = 2; i <= n; ++i) {
if (tp[sa[i - 1]] != tp[sa[i]] || tp[sa[i - 1] + k] != tp[sa[i] + k]) ++c1;
rk[sa[i]] = c1;
}
}
int lcp = 0;
for (int i = 1; i <= n; ++i) {
if (lcp) --lcp;
int j = sa[rk[i] - 1];
while (s[j + lcp] == s[i + lcp]) ++lcp;
H[rk[i]] = lcp;
}
} int ans;
int main() {
scanf("%s%s", s1 + 1, s2 + 1);
n = n1 = strlen(s1 + 1); n2 = strlen(s2 + 1);
for (int i = 1; i <= n1; ++i) s[i] = s1[i];
s[++n] = '$';
for (int i = 1; i <= n2; ++i) s[++n] = s2[i]; SA();
for (int i = 2; i <= n; ++i) {
int x = sa[i], y = sa[i - 1];
if (x > y) swap(x, y);
if (x <= n1 && y > n1 + 1) ans = max(ans, H[i]);
} cout << ans << endl;
return 0;
}

【后缀数组】【SP1811】 LCS - Longest Common Substring的更多相关文章

  1. 后缀数组:HDU1043 Longest Common Substring

    Longest Common Substring Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  2. SP1811 LCS - Longest Common Substring

    \(\color{#0066ff}{ 题目描述 }\) 输入2 个长度不大于250000的字符串,输出这2 个字符串的最长公共子串.如果没有公共子串则输出0 . \(\color{#0066ff}{输 ...

  3. 【题解】SP1811 LCS - Longest Common Substring

    \(\color{purple}{Link}\) \(\text{Solution:}\) 题目要求找到两个串的最长公共子串.\(LCP\) 我们将两个串中间和末尾插入终止符,并弄到一棵后缀树上去. ...

  4. 「双串最长公共子串」SP1811 LCS - Longest Common Substring

    知识点: SAM,SA,单调栈,Hash 原题面 Luogu 来自 poj 的双倍经验 简述 给定两字符串 \(S_1, S_2\),求它们的最长公共子串长度. \(|S_1|,|S_2|\le 2. ...

  5. 【SP1811】LCS - Longest Common Substring

    [SP1811]LCS - Longest Common Substring 题面 洛谷 题解 建好后缀自动机后从初始状态沿着现在的边匹配, 如果失配则跳它的后缀链接,因为你跳后缀链接到达的\(End ...

  6. spoj 1811 LCS - Longest Common Substring (后缀自己主动机)

    spoj 1811 LCS - Longest Common Substring 题意: 给出两个串S, T, 求最长公共子串. 限制: |S|, |T| <= 1e5 思路: dp O(n^2 ...

  7. 后缀自动机(SAM) :SPOJ LCS - Longest Common Substring

    LCS - Longest Common Substring no tags  A string is finite sequence of characters over a non-empty f ...

  8. spoj1811 LCS - Longest Common Substring

    地址:http://www.spoj.com/problems/LCS/ 题面: LCS - Longest Common Substring no tags  A string is finite ...

  9. SPOJ1811 LCS - Longest Common Substring(后缀自动机)

    A string is finite sequence of characters over a non-empty finite set Σ. In this problem, Σ is the s ...

  10. LCS - Longest Common Substring(spoj1811) (sam(后缀自动机)+LCS)

    A string is finite sequence of characters over a non-empty finite set \(\sum\). In this problem, \(\ ...

随机推荐

  1. 《JAVA高并发编程详解》-七种单例模式

  2. js获取对象的属性个数

    for (var i = 0; i < dt.length; i++) { if (Object.keys(dt[i]).length <= 1) { dt.splice(i, 1); i ...

  3. SSO实现机制

    引言 单点登录有许多开发商提供解决方案,本文以yale大学SSO开源项目CAS为例,介绍单点登录实现机制. 术语解释 SSO-Single Sign On,单点登录 TGT-Ticket Granti ...

  4. form表单的密码是否一致校验功能

    这是form类表单,自定义的form表单,需要重写钩子函数 """ forms类表单 """ # 校验密码是否一致 from django. ...

  5. P1018 乘积最大(DP)

    题目 P1018 乘积最大 解析 区间DP 设\(f[i][j]\)表示选\(i\)个数,插入\(j\)个乘号时的最大值 设\(num[i][j]\)是\(s[i,j]\)里的数字 转移方程就是\(f ...

  6. 2.熟悉LINUX的基本操作

    cd命令:切换目录 (1)切换到目录 /usr/local cd /usr/local (2)去到目前的上层目录 cd .. (3)回到自己的主文件夹 cd ~ ls命令:查看文件与目录 (4)查看目 ...

  7. 如何搭建java web的开发环境,以及mysql的安装过程

    1 http协议响应 http响应由三部分组成: 状态行: 响应报头: 响应正文: 1 下载JDK,安装并配置环境变量 2 配置环境变量的步骤: 在系统变量栏中单击新建按钮,新建变量JAVA_HOME ...

  8. 如何在SAP Cloud Platform上进行第一个integration flow开发

    登录SAP Cloud Platform integration tenant,点击Edit图标: 创建一个新的Content package: 保存content package后,点击artifa ...

  9. 身份证验证PHP类

    PHP根据身份证号,自动获取对应的星座函数,然后自动返回对应的星座,自动返回性别,判断是否成年 <?php class IdcardAction extends Action{ // PHP根据 ...

  10. Flask--静态资源

    静态资源 from flask import Flask, render_template app = Flask(__name__, template_folder="templates& ...