SP740 TRT - Treats for the Cows

题目描述

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

输入格式

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

输出格式

The maximum revenue FJ can achieve by selling the treats

题意翻译

题目描述

FJ经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天FJ售出一份零食.当然FJ希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:

•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,FJ每天可以从盒子的任一端取出最外面的一个.

•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样FJ就可以把它们卖出更高的价钱.

•每份零食的初始价值不一定相同.FJ进货时,第i份零食的初始价值为Vi(1≤Vi≤1000)(Vi指的是从盒子顶端往下的第i份零食的初始价值).

•第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.

FJ告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.

输入输出格式

输入格式

第一行:一个整数n。 接下来的n行:每行一个整数Vi。

输出格式

FJ通过出售零食最多能得到的钱数。

输入输出样例

输入 #1

5

1

3

1

5

2

输出 #1

43

【思路】

区间DP

【题目大意】

每次都从左端点或者右端点选择一个零食

获得的价值是这个零食的价值乘以是第几个选择的

【核心思路】

可以设置一个状态f(i,j)

表示选取了i个零食,在左边选取了j个

这个状态可以由前面选取了i - 1个零食

在左边选取j个零食或者在左边选取了j-1个零食

意思就是:

之前选取了i-1个零食

现在选取的第i个零食

分别在左边选的还是在右边选的情况转移过来

【DP方程式】

\[f[i][j] = max(f[i - 1][j] + a[n - i + 1 + j] * i,f[i - 1][j - 1] + a[j] * i)
\]

【完整代码】

#include<iostream>
#include<cstdio> using namespace std;
const int Max = 2005;
int a[Max];
int f[Max][Max]; int main()
{
int n;
cin >> n;
for(register int i = 1;i <= n;++ i)
cin >> a[i];
for(register int i = 1;i <= n;++ i)
for(register int j = 0;j <= i;++ j)
f[i][j] = max(f[i - 1][j] + a[n - i + 1 + j] * i,f[i - 1][j - 1] + a[j] * i);
int M = 0;
for(register int i = 0;i <= n;++ i)
M = max(M,f[n][i]);
cout << M << endl;
return 0;
}

洛谷 SP740 TRT - Treats for the Cows 题解的更多相关文章

  1. 洛谷 P3088 [USACO13NOV]挤奶牛Crowded Cows 题解

    P3088 [USACO13NOV]挤奶牛Crowded Cows 题目描述 Farmer John's N cows (1 <= N <= 50,000) are grazing alo ...

  2. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解

    题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...

  3. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

  4. 洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows 题解

    P2858 [USACO06FEB]奶牛零食Treats for the Cows 题目描述 FJ has purchased N (1 <= N <= 2000) yummy treat ...

  5. POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows

    一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...

  6. [BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)

    [BZOJ 1652][USACO 06FEB]Treats for the Cows Description FJ has purchased N (1 <= N <= 2000) yu ...

  7. 洛谷P3387 【模板】缩点 题解

    背景 今天\(loj\)挂了,于是就有了闲情雅致来刷\(luogu\) 题面 洛谷P3387 [模板]缩点传送门 题意 给定一个\(n\)个点\(m\)条边有向图,每个点有一个权值,求一条路径,使路径 ...

  8. [NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)

    [NOI导刊2010提高&洛谷P1774]最接近神的人 Description 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某 ...

  9. [洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)

    [洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P, ...

随机推荐

  1. CF704D Captain America 上下界网络流

    传送门 现在相当于说每一个条件都有一个染成红色的盾牌的数量限制\([l,r]\),需要满足所有限制且染成红色的盾牌数量最小/最大. 注意到一个盾牌染成红色对于一行和一列都会产生影响.如果选中一个物品对 ...

  2. 打印从1到n位数的最大值

    题目: 输入数字n,按顺序打印从1到最大的n位十进制数,如输入3,则打印从1.2.3一直到最大的3位数999 参考大数运算的方法.考虑到位数会很大,所以采用字符串的形式解决.对输入的n,创建一个长度为 ...

  3. Django开发简单博客流程

    什么是Django? Django是一个基于python的高级web开发框架 它能够让开发人员进行高效且快速的开发 高度集成(不用自己造轮子), 免费并且开源 当前路径创建工程 django-admi ...

  4. Kafka理解

    1. 引言 最近使用Kafka做消息队列时,完成了基本的消息发送与接收,已上线运行.一方面防止出现Bug时自己不能及时定位问题,一方面网上的配置可能还可以更加优化,决定去了解下Kafka. 2. 配置 ...

  5. Bash速查表

    例 #!/usr/bin/env bash NAME="John" echo "Hello $NAME!" 变量 NAME="John" e ...

  6. Win10家庭版升级到企业版的方法

    一.家庭版升级企业版 1.右键单击[此电脑]——>属性 2.点击更改产品密钥 3.输入密钥:NPPR9-FWDCX-D2C8J-H872K-2YT43 4.点击下一步,验证结束后点击开始升级,然 ...

  7. 自学Python编程的第六天(最后代码有更好的请告诉我)----------来自苦逼的转行人

    2019-09-16-23:09:06 自学Python的第六天,也是写博客的第六天 今天学的内容是有关dict字典的用法 看视频加上练习,目前还没遇到有难点,但是感觉很不好的样子 没有难点以后突然出 ...

  8. Matlab组合模式

    组合模式(Composite),将对象组合成树形结构以表示“部分-整体”的层次结构,组合模式使得用户对单个对象和组合对象的使用具有一致性.组合模式的目的是让客户端不再区分操作的是组合对象(Compos ...

  9. AppDir【创建缓存目录】【建议使用这个工具类】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 创建缓存目录 public static String APP_CACHE = "";// /storage/e ...

  10. KVM on CubieTruck 原理以及网络性能相关思考

    1.virtio框架包括哪些? (1)virtio:面向guest驱动的API接口,它在概念上将前端驱动附加到后端驱动,具体实现位于driver/virtio/virtio.c (2)Transpor ...