查找算法(5)--Tree table lookup--树表查找
1.树表查找
(1) 最简单的树表查找算法——二叉树查找算法。
[1]基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。
[2]二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree)或者是一棵空树,或者是具有下列性质的二叉树:
- 1)若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 2)若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 3)任意节点的左、右子树也分别为二叉查找树。
[3]二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。
不同形态的二叉查找树如下图所示:
[4]复杂度分析:它和二分查找一样,插入和查找的时间复杂度均为O(logn),但是在最坏的情况下仍然会有O(n)的时间复杂度。原因在于插入和删除元素的时候,树没有保持平衡(比如,我们查找上图(b)中的“93”,我们需要进行n次查找操作)。我们追求的是在最坏的情况下仍然有较好的时间复杂度,这就是平衡查找树设计的初衷。
下图为二叉树查找和顺序查找以及二分查找性能的对比图:
基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。
(2)平衡查找树之2-3查找树(2-3 Tree)
[1]2-3查找树定义:和二叉树不一样,2-3树运行每个节点保存1个或者两个的值。对于普通的2节点(2-node),他保存1个key和左右两个自己点。对应3节点(3-node),保存两个Key,2-3查找树的定义如下:
- 1)要么为空,要么:
- 2)对于2节点,该节点保存一个key及对应value,以及两个指向左右节点的节点,左节点也是一个2-3节点,所有的值都比key要小,右节点也是一个2-3节点,所有的值比key要大。
- 3)对于3节点,该节点保存两个key及对应value,以及三个指向左中右的节点。左节点也是一个2-3节点,所有的值均比两个key中的最小的key还要小;中间节点也是一个2-3节点,中间节点的key值在两个跟节点key值之间;右节点也是一个2-3节点,节点的所有key值比两个key中的最大的key还要大。
[2]2-3查找树的性质:
- 1)如果中序遍历2-3查找树,就可以得到排好序的序列;
- 2)在一个完全平衡的2-3查找树中,根节点到每一个为空节点的距离都相同。(这也是平衡树中“平衡”一词的概念,根节点到叶节点的最长距离对应于查找算法的最坏情况,而平衡树中根节点到叶节点的距离都一样,最坏情况也具有对数复杂度。)
性质2)如下图所示:
[3]复杂度分析:
2-3树的查找效率与树的高度是息息相关的。
- 在最坏的情况下,也就是所有的节点都是2-node节点,查找效率为lgN
- 在最好的情况下,所有的节点都是3-node节点,查找效率为log3N约等于0.631lgN
距离来说,对于1百万个节点的2-3树,树的高度为12-20之间,对于10亿个节点的2-3树,树的高度为18-30之间。
对于插入来说,只需要常数次操作即可完成,因为他只需要修改与该节点关联的节点即可,不需要检查其他节点,所以效率和查找类似。下面是2-3查找树的效率:
(3) 平衡查找树之红黑树(Red-Black Tree)
2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgn,从而保证了最坏情况下的时间复杂度。但是2-3树实现起来比较复杂,于是就有了一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree)。
[1]基本思想:红黑树的思想就是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息。红黑树中将节点之间的链接分为两种不同类型,红色链接,他用来链接两个2-nodes节点来表示一个3-nodes节点。黑色链接用来链接普通的2-3节点。特别的,使用红色链接的两个2-nodes来表示一个3-nodes节点,并且向左倾斜,即一个2-node是另一个2-node的左子节点。这种做法的好处是查找的时候不用做任何修改,和普通的二叉查找树相同。
[2]红黑树的定义:
红黑树是一种具有红色和黑色链接的平衡查找树,同时满足:
- 红色节点向左倾斜
- 一个节点不可能有两个红色链接
- 整个树完全黑色平衡,即从根节点到所以叶子结点的路径上,黑色链接的个数都相同。
下图可以看到红黑树其实是2-3树的另外一种表现形式:如果我们将红色的连线水平绘制,那么他链接的两个2-node节点就是2-3树中的一个3-node节点了。
[3]红黑树的性质:整个树完全黑色平衡,即从根节点到所以叶子结点的路径上,黑色链接的个数都相同(2-3树的第2)性质,从根节点到叶子节点的距离都相等)。
[4]复杂度分析:最坏的情况就是,红黑树中除了最左侧路径全部是由3-node节点组成,即红黑相间的路径长度是全黑路径长度的2倍。
下图是一个典型的红黑树,从中可以看到最长的路径(红黑相间的路径)是最短路径的2倍:
红黑树的平均高度大约为logn。
下图是红黑树在各种情况下的时间复杂度,可以看出红黑树是2-3查找树的一种实现,它能保证最坏情况下仍然具有对数的时间复杂度。
红黑树这种数据结构应用十分广泛,在多种编程语言中被用作符号表的实现,如:
- Java中的java.util.TreeMap,java.util.TreeSet;
- C++ STL中的:map,multimap,multiset;
- .NET中的:SortedDictionary,SortedSet 等。
(4)B树和B+树(B Tree/B+ Tree)
平衡查找树中的2-3树以及其实现红黑树。2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key。
维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种树状数据结构,它能够存储数据、对其进行排序并允许以O(log n)的时间复杂度运行进行查找、顺序读取、插入和删除的数据结构。B树,概括来说是一个节点可以拥有多于2个子节点的二叉查找树。与自平衡二叉查找树不同,B树为系统最优化大块数据的读和写操作。B-tree算法减少定位记录时所经历的中间过程,从而加快存取速度。普遍运用在数据库和文件系统。
[1]B树定义:
B树可以看作是对2-3查找树的一种扩展,即他允许每个节点有M-1个子节点。
- 根节点至少有两个子节点
- 每个节点有M-1个key,并且以升序排列
- 位于M-1和M key的子节点的值位于M-1 和M key对应的Value之间
- 其它节点至少有M/2个子节点
下图是一个M=4 阶的B树:
可以看到B树是2-3树的一种扩展,他允许一个节点有多于2个的元素。B树的插入及平衡化操作和2-3树很相似,这里就不介绍了。下面是往B树中依次插入
6 10 4 14 5 11 15 3 2 12 1 7 8 8 6 3 6 21 5 15 15 6 32 23 45 65 7 8 6 5 4
的演示动画:
[2]B+树定义:
B+树是对B树的一种变形树,它与B树的差异在于:
- 有k个子结点的结点必然有k个关键码;
- 非叶结点仅具有索引作用,跟记录有关的信息均存放在叶结点中。
- 树的所有叶结点构成一个有序链表,可以按照关键码排序的次序遍历全部记录。
如下图,是一个B+树:
下图是B+树的插入动画:
B和B+树的区别在于,B+树的非叶子结点只包含导航信息,不包含实际的值,所有的叶子结点和相连的节点使用链表相连,便于区间查找和遍历。
B+ 树的优点在于:
- 由于B+树在内部节点上不好含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子几点上关联的数据也具有更好的缓存命中率。
- B+树的叶子结点都是相链的,因此对整棵树的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。相邻的元素可能在内存中不相邻,所以缓存命中性没有B+树好。
但是B树也有优点,其优点在于,由于B树的每一个节点都包含key和value,因此经常访问的元素可能离根节点更近,因此访问也更迅速。
下面是B 树和B+树的区别图:
B/B+树常用于文件系统和数据库系统中,它通过对每个节点存储个数的扩展,使得对连续的数据能够进行较快的定位和访问,能够有效减少查找时间,提高存储的空间局部性从而减少IO操作。它广泛用于文件系统及数据库中,如:
- Windows:HPFS文件系统;
- Mac:HFS,HFS+文件系统;
- Linux:ResiserFS,XFS,Ext3FS,JFS文件系统;
- 数据库:ORACLE,MYSQL,SQLSERVER等中。
(5)树表查找总结:
二叉查找树平均查找性能不错,为O(logn),但是最坏情况会退化为O(n)。在二叉查找树的基础上进行优化,我们可以使用平衡查找树。平衡查找树中的2-3查找树,这种数据结构在插入之后能够进行自平衡操作,从而保证了树的高度在一定的范围内进而能够保证最坏情况下的时间复杂度。但是2-3查找树实现起来比较困难,红黑树是2-3树的一种简单高效的实现,他巧妙地使用颜色标记来替代2-3树中比较难处理的3-node节点问题。红黑树是一种比较高效的平衡查找树,应用非常广泛,很多编程语言的内部实现都或多或少的采用了红黑树。
除此之外,2-3查找树的另一个扩展——B/B+平衡树,在文件系统和数据库系统中有着广泛的应用。
查找算法(5)--Tree table lookup--树表查找的更多相关文章
- Python 树表查找_千树万树梨花开,忽如一夜春风来(二叉排序树、平衡二叉树)
什么是树表查询? 借助具有特殊性质的树数据结构进行关键字查找. 本文所涉及到的特殊结构性质的树包括: 二叉排序树. 平衡二叉树. 使用上述树结构存储数据时,因其本身对结点之间的关系以及顺序有特殊要求, ...
- Python与数据结构[3] -> 树/Tree[1] -> 表达式树和查找树的 Python 实现
表达式树和查找树的 Python 实现 目录 二叉表达式树 二叉查找树 1 二叉表达式树 表达式树是二叉树的一种应用,其树叶是常数或变量,而节点为操作符,构建表达式树的过程与后缀表达式的计算类似,只不 ...
- 查找(四)-------基于B树的查找和所谓的B树
关于B树,不想写太多了,因为花在基于树的查找上的时间已经特么有点多了,就简单写写算了,如果以后有需要,或者有时间,可以再深入写写 首先说一下,为什么要有B树,以及B树是什么,很多数据结构和算法的书上来 ...
- 查找算法(4)--Fibonacci search--斐波那契查找
1.斐波那契查找 (1)说明 在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割. 黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二, ...
- 七大查找算法(附C语言代码实现)
来自:Poll的笔记 - 博客园 链接:http://www.cnblogs.com/maybe2030/p/4715035.html 阅读目录 1.顺序查找 2.二分查找 3.插值查找 4.斐波那契 ...
- Knowledge_SPA——精研查找算法
首先保证这一篇分析查找算法的文章,气质与大部分搜索引擎搜索到的文章不同,主要体现在代码上面,会更加高级,会结合到很多之前研究过的内容,例如设计模式,泛型等.这也与我的上一篇面向程序员编程--精研排序算 ...
- 七大查找算法(Python)
查找算法 -- 简介 查找(Searching)就是根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素. 查找表(Search Table):由同一类型的数据元素构成的集合 ...
- [Data Structure & Algorithm] 七大查找算法
查找是在大量的信息中寻找一个特定的信息元素,在计算机应用中,查找是常用的基本运算,例如编译程序中符号表的查找.本文简单概括性的介绍了常见的七种查找算法,说是七种,其实二分查找.插值查找以及斐波那契查找 ...
- JS-七大查找算法
顺序查找 二分查找 插值查找 斐波那契查找 树表查找 分块查找 哈希查找 查找定义:根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录).查找算法分类:1)静态查找和动态查找:注 ...
随机推荐
- 树莓派无显示屏连接wifi
在烧好Raspbian系统的TF卡boot分区新建 wpa_supplicant.conf 文件,内容如下(修改自己的WIFI名和密码,key_mgmt根据路由器配置),保存后启动树莓派即可自动连接W ...
- Python 大文件处理
非内存资源可以使用with 在python中逐行读取大文件 在我们日常工作中,难免会有处理日志文件的时候,当文件小的时候,基本不用当心什么,直接用file.read()或readlines()就可以了 ...
- c#时间与时间戳互转13位
Unix时间戳(Unix timestamp),或称Unix时间(Unix time).POSIX时间(POSIX time),是一种时间表示方式,定义为从格林威治时间1970年01月01日00时00 ...
- Windows Server 2008 R2 忘记密码的处理方法
这篇文章主要介绍了Windows Server 2008 R2 忘记密码的处理方法,一般两种方法,一种是软件方法一种是通过系统安装盘实现的,这里久违大家分享一下需要的朋友可以参考下 遗忘Windows ...
- SRVCC B1,B2事件总结
何为SRVCC? SRVCC(Single Radio Voice Call Continuity)是3GPP提出的一种VoLTE语音业务连续性方案,主要是为了解决当单射频UE 在LTE网络和2G/3 ...
- Python基础知识笔记-作用域
Python 中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的. 变量的作用域决定了在哪一部分程序可以访问哪个特定的变量名称.Python的作用域一共有4种,分别是: ...
- Mobx | 强大的状态管理工具 | 可以用Mobx来替代掉redux
来源简书 电梯直达 https://www.jianshu.com/p/505d9d9fe36a Mobx是一个功能强大,上手非常容易的状态管理工具.就连redux的作者也曾经向大家推荐过它,在不少情 ...
- 常用 shell 命令 chmod | root
chmod 命令 chmod 命令 [格式1:] chmod [ugoa][+-=][rwx] 文件或目录 /*u.g.o.a : u属主,g属组,o其他用户,a所有用户*/ /*+.-.= : 增加 ...
- 为什么 JVM 不用 JIT 全程编译?
考虑到跨平台,所以无法使用AOT: 考虑到执行效率,所以无法全部使用JIT: 编译技术大约分为两种,一种AOT,只线下(offline)就将源代码编译成目标机器码,这是普遍用在系统程序语言中:另一种是 ...
- java语言评价--java帝国
“陛下您想想,我们有很多宝贝,” IO大臣根本不理线程大臣, 继续侃侃而谈:“ 比如IoC, AOP,反射.动态代理.泛型.注解.JDBC.JMS...... 还有我们引以为豪的JVM.这些东西,那些 ...