树莓派是国内比较流行的一款卡片式计算机,但是受限于其硬件配置,用树莓派玩深度学习似乎有些艰难。最近OPENAI为嵌入式设备推出了一款AI框架Tengine,其对于配置的要求相比传统框架降低了很多,我尝试着在树莓派上进行了搭建并成功运行了Mobilenet-SSD。

Tengine简介

OAID/Tengine|github

  • Tengine 是OPEN AI LAB 为嵌入式设备开发的一个轻量级、高性能并且模块化的引擎。
  • Tengine在嵌入式设备上支持CPU,GPU,DLA/NPU,DSP异构计算的计算框架,实现异构计算的调度器,基于ARM平台的高效的计算库实现,针对特定硬件平台的性能优化,动态规划计算图的内存使用,提供对于网络远端AI计算能力的访问支持,支持多级别并行,整个系统模块可拆卸,基于事件驱动的计算模型,吸取已有AI计算框架的优点,设计全新的计算图表示。

编译安装开源版Tengine

安装相关工具

sudo apt-get install git cmake

安装支持库

sudo apt-get install libprotobuf-dev protobuf-compiler libboost-all-dev libgoogle-glog-dev libopencv-dev libopenblas-dev
  • protobuf 是一种轻便高效的数据存储格式,这是caffe各种配置文件所使用的数据格式
  • boost 是一个c++的扩展程序库,稍后Tengine的编译依赖于该库
  • google-glog 是一个google提供的日志系统的程序库
  • opencv 是一个开源的计算机视觉库
  • openblas 是一个开源的基础线性代数子程序库

下载&编译

以下的所有步骤建议在pi用户下完成(而非root),不然可能报错。

1.从github上下载最新的开源版Tengine源码

git clone https://github.com/OAID/Tengine.git

2.切换工作目录到Tengine

cd Tengine

3.准备好配置文件
Tengine目录下提供了配置模板 makefile.config.example 文件

cp makefile.config.example makefile.config

4.修改配置文件 makefile.config
由于开源版的Tengine不支持针对armv7的优化,所以需要用openblas替代实现;
将 CONFIG_ARCH_ARM64=y 这一行注释掉(行首加井号 #)以关闭ARM64架构的优化实现;
解除 CONFIG_ARCH_ARM32=y 这一行解除注释(删除行首的井号 #)以开启BLAS计算库的实现方式
CONFIG_ARCH_BLAS=y 这一行不需要解除注释

5.编译并安装

make -j4
make install

这里的 -j4 表示开启四个线程进行编译

测试

1.下载mobilenet-ssd模型并放置在 Tengine/models 目录下

两个文件:MobileNetSSD_deploy.caffemodel 和 MobileNetSSD_deploy.prototxt
下载链接(提取码为57vb):https://pan.baidu.com/s/1LXZ8vOdyOo50IXS0CUPp8g

如果是测试YOLOv2则下载

yolo-voc.prototxt 
yolo-voc.caffemodel

2.将工作目录切换到mobilenet-ssd示例程序的目录下

cd ~/Tengine/examples/mobilenet_ssd

3.编译示例程序

cmake -DTENGINE_DIR=/home/pi/Tengine .
make

这里 -DTENGINE_DIR用于为cmake指定环境变量TENGINE_DIR,该变量可以在CMakeLists.txt文件中找到

4.运行示例程序

./MSSD

指定参数:

./MSSD -p mssd.prototxt -m mssd.caffemodel -i img.jpg

等待良久后,出现例程的运行结果:

可以看到例程运行耗时2分钟,考虑到例程仅识别了一张图片一次,算法运行速度很不理想。

对比在RK3399上的表现,除了树莓派的硬件配置较低外(我用的树莓派3B),所使用的计算库的不同也是重要的原因,BLAS的库计算性能要差于Tengine提供的官方库。

参考链接:

1. https://blog.csdn.net/qq_33287871/article/details/99686969

2. https://songrbb.github.io/2018/08/17/利用Tengine在树莓派上跑深度学习网络/?tdsourcetag=s_pctim_aiomsg

3. https://github.com/OAID/Tengine/tree/master/examples/mobilenet_ssd

利用Tengine在树莓派上跑深度学习网络的更多相关文章

  1. 用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈

    用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈 深度学习已变得无处不在,不可或缺.这场革命的一部分是由可扩展的深度学习系统推动的,如滕索弗洛.MXNet.咖啡和皮托奇.大多数现有系统针对 ...

  2. 从零开始在ubuntu上配置深度学习开发环境

    从零开始在ubuntu上配置深度学习开发环境 昨天一不小心把原来配置好的台式机的开发环境破坏了,调了半天没有调回来,索性就重装一次ubuntu系统.这篇文章主要记录一个简单的.‘傻瓜式’教程. 一.U ...

  3. github上热门深度学习项目

    github上热门深度学习项目 项目名 Stars 描述 TensorFlow 29622 使用数据流图进行可扩展机器学习的计算. Caffe 11799 Caffe:深度学习的快速开放框架. [Ne ...

  4. <深度学习优化策略-3> 深度学习网络加速器Weight Normalization_WN

    前面我们学习过深度学习中用于加速网络训练.提升网络泛化能力的两种策略:Batch Normalization(Batch Normalization)和Layer Normalization(LN). ...

  5. 如何免费使用GPU跑深度学习代码

    从事深度学习的研究者都知道,深度学习代码需要设计海量的数据,需要很大很大很大(重要的事情说三遍)的计算量,以至于CPU算不过来,需要通过GPU帮忙,但这必不意味着CPU的性能没GPU强,CPU是那种综 ...

  6. 点云上的深度学习及其在三维场景理解中的应用(PPT内容整理PointNet)

      这篇博客主要是整理了PointNet提出者祁芮中台介绍PointNet.PointNet++.Frustum PointNets的PPT内容,内容包括如何将点云进行深度学习,如何设计新型的网络架构 ...

  7. 训练深度学习网络时候,出现Nan是什么原因,怎么才能避免?——我自己是因为data有nan的坏数据,clear下解决

    from:https://www.zhihu.com/question/49346370   Harick     梯度爆炸了吧. 我的解决办法一般以下几条:1.数据归一化(减均值,除方差,或者加入n ...

  8. 【神经网络与深度学习】chainer边运行边定义的方法使构建深度学习网络变的灵活简单

    Chainer是一个专门为高效研究和开发深度学习算法而设计的开源框架. 这篇博文会通过一些例子简要地介绍一下Chainer,同时把它与其他一些框架做比较,比如Caffe.Theano.Torch和Te ...

  9. 如何可视化深度学习网络中Attention层

    前言 在训练深度学习模型时,常想一窥网络结构中的attention层权重分布,观察序列输入的哪些词或者词组合是网络比较care的.在小论文中主要研究了关于词性POS对输入序列的注意力机制.同时对比实验 ...

随机推荐

  1. 最小费用最大流 学习笔记&&Luogu P3381 【模板】最小费用最大流

    题目描述 给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 题目链接 思路 最大流是没有问题的,关键是同时保证最小费用,因此,就可以把 ...

  2. 「ZJOI2019」浙江省选

    在八月来临前补完了zjoi2019 本来是想在八月前做完暑假作业的? 传送门 Description 给\(n\)条斜率为正的直线,询问每条直线是否在某处高度为前\(m\)名,如果是,询问最小排名 S ...

  3. k8s 二进制部署详解

    环境说明: 192.168.1.101 -- master01 + etcd01 192.168.1.102 -- etcd02 192.168.1.103 -- etcd03 192.168.1.1 ...

  4. 入门理解mysql-binlog

    mysql-binlog简介: mysql的二进制日志记录了所有DDL和DML(除select) 开启binlog日志后会有1%左右的的性能损耗 二进制日志包括两类 索引文件 XXXX.index 日 ...

  5. idea配置热加载

    第一步:添加依赖 spring-boot项目中引入如下依赖 <dependency> <groupId>org.springframework.boot</groupId ...

  6. WPF实现背景透明磨砂,并通过HandyControl组件实现弹出等待框

    前言:上一个版本的Winform需要改成WPF来做界面,第一次接触WPF,在转换过程中遇到的需求就是一个背景透明模糊,一个是类似于 加载中…… 这样的等待窗口,等后台执行完毕后再关掉.在Winform ...

  7. 刨树根,抓住redis 进行七连问

    追着 redis 进行七连问 Hello Redis 有几个问题想请教你 Hello,Redis! 我们相处已经很多年了,从模糊的认识到现在我们已经深入结合,你的好我一直都知道也一直都记住,能否在让我 ...

  8. C#编辑xml文件

    string path = @"C:\Users\Administrator\Desktop\无人智能便利店\install\收银端\XMLRFI.xml"; XmlDocumen ...

  9. 剑指 Offer——3. 从尾到头打印链表

    题目描述 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. 一般是不破坏链表结构 思路与实现 直接用栈存储就好了 public class Solution { public Arra ...

  10. Ubuntu16.04的搭建l.2.t.p.d(宿舍访问公司内网)

    主要的实现步骤 openswan(ipsec) : 提供一个密钥 ppp :提供用户名和密码 xl2tpd : 提供L2TP服务 sysctl : 提供服务器内部转发 iptables : 提供请求从 ...