类别不平衡问题之SMOTE算法(Python imblearn极简实现)
类别不平衡问题
类别不平衡问题,顾名思义,即数据集中存在某一类样本,其数量远多于或远少于其他类样本,从而导致一些机器学习模型失效的问题。例如逻辑回归即不适合处理类别不平衡问题,例如逻辑回归在欺诈检测问题中,因为绝大多数样本都为正常样本,欺诈样本很少,逻辑回归算法会倾向于把大多数样本判定为正常样本,这样能达到很高的准确率,但是达不到很高的召回率。
类别不平衡问题在很多场景中存在,例如欺诈检测,风控识别,在这些样本中,黑样本(一般为存在问题的样本)的数量一般远少于白样本(正常样本)。
上采样(过采样)
和下采样(负采样)策略是解决类别不平衡问题的基本方法之一。上采样即增加少数类样本的数量,下采样即减少多数类样本以获取相对平衡的数据集。
最简单的上采样方法可以直接将少数类样本复制几份后添加到样本集中,最简单的下采样则可以直接只取一定百分比的多数类样本作为训练集。
SMOTE算法是用的比较多的一种上采样算法,SMOTE算法的原理并不是太复杂,用python从头实现也只有几十行代码,但是python的imblearn包提供了更方便的接口,在需要快速实现代码的时候可直接调用imblearn。
imblearn类别不平衡包提供了上采样和下采样策略中的多种接口,基本调用方式一致,主要介绍一下对应的SMOTE方法和下采样中的RandomUnderSampler方法。imblearn可使用pip
install
imblearn直接安装。
代码示例
生成类别不平衡数据
# 使用sklearn的make_classification生成不平衡数据样本
from sklearn.datasets import make_classification # 生成一组0和1比例为9比1的样本,X为特征,y为对应的标签
X, y = make_classification(n_classes=2, class_sep=2,
weights=[0.9, 0.1], n_informative=3,
n_redundant=1, flip_y=0
n_features = 20, n_clusters_per_class = 1,
n_samples = 1000, random_state = 10)
查看数据分布 from collections import Counter # 查看所生成的样本类别分布,0和1样本比例9比1,属于类别不平衡数据 print(Counter(y)) # Counter({0: 900, 1: 100})
SMOTE算法核心语句 # 使用imlbearn库中上采样方法中的SMOTE接口 from imblearn.over_sampling import SMOTE # 定义SMOTE模型,random_state相当于随机数种子的作用 smo = SMOTE(random_state=42) X_smo, y_smo = smo.fit_sample(X, y)
查看经过SMOTE之后的数据分布 print(Counter(y_smo)) # Counter({0: 900, 1: 900})
从上述代码中可以看出,SMOTE模型默认生成一比一的数据,如果想生成其他比例的数据,可以使用radio参数。不仅可以处理二分类问题,同样适用于多分类问题 # 可通过radio参数指定对应类别要生成的数据的数量 smo = SMOTE(ratio={1: 300}, random_state=42) # 生成0和1比例为3比1的数据样本 X_smo, y_smo = smo.fit_sample(X, y) print(Counter(y_smo)) # Counter({0: 900, 1: 300})
imblearn中上采样接口提供了随机上采样RandomOverSampler,SMOTE,ADASYN三种方式,调用方式和主要参数基本一样。下采样接口中也提供了多种方法,以RandomUnderSampler为例。 from imblearn.under_sampling import RandomUnderSampler # 同理,也可使用ratio来指定下采样的比例 rus = RandomUnderSampler(ratio={0: 500}, random_state=0) X_rus, y_rus = rus.fit_sample(X, y) print(Counter(y_smo)) # Counter({0: 500, 1: 300})
类别不平衡问题之SMOTE算法(Python imblearn极简实现)的更多相关文章
- 流动python - 一个极简主义event制
event至少该系统的核心,以满足: 1.存储容器事件,可以被添加到事件来删除 2.触发事件fire 守则. class Event(list): def __call__(self, *args, ...
- python之极简ATM系统示例
"""用户可登陆系统输错三次锁定账号用户可以创建新的用户名密码新用户初始账户设为0新用户可直接登陆系统用户登陆成功后可以选择业务类型用户数据可以根据业务修改输入Q随时退出 ...
- Python:SMOTE算法——样本不均衡时候生成新样本的算法
Python:SMOTE算法 直接用python的库, imbalanced-learn imbalanced-learn is a python package offering a number ...
- 机器学习 —— 类不平衡问题与SMOTE过采样算法
在前段时间做本科毕业设计的时候,遇到了各个类别的样本量分布不均的问题——某些类别的样本数量极多,而有些类别的样本数量极少,也就是所谓的类不平衡(class-imbalance)问题. 本篇简述了以下内 ...
- [转]类不平衡问题与SMOTE过采样算法
在前段时间做本科毕业设计的时候,遇到了各个类别的样本量分布不均的问题——某些类别的样本数量极多,而有些类别的样本数量极少,也就是所谓的类不平衡(class-imbalance)问题. 本篇简述了以下内 ...
- 过采样中用到的SMOTE算法
平时很多分类问题都会面对样本不均衡的问题,很多算法在这种情况下分类效果都不够理想.类不平衡(class-imbalance)是指在训练分类器中所使用的训练集的类别分布不均.比如说一个二分类问题,100 ...
- 机器学习类别不平衡处理之欠采样(undersampling)
类别不平衡就是指分类任务中不同类别的训练样例数目差别很大的情况 常用的做法有三种,分别是1.欠采样, 2.过采样, 3.阈值移动 由于这几天做的project的target为正值的概率不到4%,且数据 ...
- 如何解决数据类别不平衡问题(Data with Imbalanced Class)
类别不平衡问题是指:在分类任务中,数据集中来自不同类别的样本数目相差悬殊. 类别不平衡问题会造成这样的后果:在数据分布不平衡时,其往往会导致分类器的输出倾向于在数据集中占多数的类别:输出多数类会带来更 ...
- 类别不平衡问题和Softmax回归
目录 类别不平衡(class-imbalance) Softmax回归模型 类别不平衡(class-imbalance) 当不同类别的训练样本数目差别很大,则会对学习过程造成困扰.如有998个反例,但 ...
随机推荐
- MySQL Case--应用服务器性能瓶颈导致慢SQL
在分析优化慢SQL时,除考虑慢SQL对应执行计划外,还需要考虑 1. 慢SQL发生时间点的数据库服务器性能 2.慢SQL发生时间点的应用程序服务器性能 3. 慢SQL发生时间点数据库服务器和应用服务器 ...
- redis键过期 (redis 2.6及以上)
EXPIRE key seconds 用来对一个键设置一个过期时间,第二个参数表示经过多少秒后键过期. 一个键过期后, 这个键将会被自动删除. 在Redis术语中,带有过期时间的键经常被称作volat ...
- 04 -- 元类和ORM
本篇主要介绍元类,为什么说一切皆对象:如何动态的创建类等:以及ORM,即什么是ORM等知识 一.元类 1.1 在Python中一切皆对象 在学习元类中我们首先需要了解一个概念-- python中一切皆 ...
- OSI标准协议分析
1.各个层的作用 物理层:(physical Layer):物理层负责传送比特(Bit),涉及到接口和传输媒体的机械 电气特性 数据链路层:(data link layer):数据链路层负责传送的帧( ...
- cpio命令
RPM包中文件提取 cpio命令主要有三种基本模式:"-o"模式指的是copy-out模式,就是把数据备份到文件库中:"-i"模式指的是copy-in模式,就是 ...
- python统计代码总行数(代码行、空行、注释行)
我们在工作或学习代码的过程中,经常会想知道自己写了多少行代码,今天在项目环境写了个脚本统计了项目代码的数量. 功能: 1.统计代码总行数 2.统计空行数 3.统计注释行数 # coding=utf-8 ...
- linux下分析java程序占用CPU、内存过高
一.CPU过高分析 1)使用TOP命令查看CPU.内存使用状态可以发现CPU占用主要分为两部分,一部分为系统内核空间占用CPU百分比,一部分为用户空间占用CPU百分比.其中CPU状态中标示id的为空闲 ...
- 《hello-world》第九次团队作业:【Beta】Scrum meeting 1
项目 内容 这个作业属于哪个课程 2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十三 团队作业9:Beta冲刺与团队项目验收 团队名称 <hello--wor ...
- 优化MyEclipse编译速度慢的问题、build、project clean 慢
优化MyEclipse编译速度慢的问题(重点是1) 1 .关闭MyEclipse的自动validation windows > perferences > myeclipse > v ...
- go语言-二进制与位运算
一.进制介绍 1.二进制:0,1 -->不能直接用二进制来表示一个整数,用%b输出二进制 package mainimport "fmt"func main() { var ...