cesium中内置了一些常量、变量和函数,在vs和fs中可直接使用。

内置uniform

内置uniform主要置于AutomaticUniforms类里面,该类私有未开放文档。

  • czm_backgroundColor

An automatic GLSL uniform representing the current scene background color.

Example:
// GLSL declaration
uniform vec4 czm_backgroundColor;
// Example: If the given color's RGB matches the background color, invert it.
vec4 adjustColorForContrast(vec4 color)
{
if (czm_backgroundColor.rgb == color.rgb)
{
color.rgb = vec3(1.0) - color.rgb;
}
return color;
}
  • czm_brdfLut

An automatic GLSL uniform containing the BRDF look up texture used for image-based lighting computations.

Example:
// GLSL declaration
uniform sampler2D czm_brdfLut;
// Example: For a given roughness and NdotV value, find the material's BRDF information in the red and green channels
float roughness = 0.5;
float NdotV = dot(normal, view);
vec2 brdfLut = texture2D(czm_brdfLut, vec2(NdotV, 1.0 - roughness)).rg;

An automatic GLSL uniform containing the near distance (x) and the far distance (y) of the frustum defined by the camera. This is the individual frustum used for multi-frustum rendering.

Example:
// GLSL declaration
uniform vec2 czm_currentFrustum;
// Example
float frustumLength = czm_currentFrustum.y - czm_currentFrustum.x;

An automatic GLSL uniform representing the high bits of the camera position in model coordinates. This is used for GPU RTE to eliminate jittering artifacts when rendering as described in Precisions, Precisions.

Example:
// GLSL declaration
uniform vec3 czm_encodedCameraPositionMCHigh;

An automatic GLSL uniform representing the low bits of the camera position in model coordinates. This is used for GPU RTE to eliminate jittering artifacts when rendering as described in Precisions, Precisions.

Example:
// GLSL declaration
uniform vec3 czm_encodedCameraPositionMCLow;

An automatic GLSL uniform containing the near distance (x) and the far distance (y) of the frustum defined by the camera. This is the largest possible frustum, not an individual frustum used for multi-frustum rendering.

Example:
// GLSL declaration
uniform vec2 czm_entireFrustum;
// Example
float frustumLength = czm_entireFrustum.y - czm_entireFrustum.x;
  • czm_environmentMap

An automatic GLSL uniform containing the environment map used within the scene.

Example:
// GLSL declaration
uniform samplerCube czm_environmentMap;
// Example: Create a perfect reflection of the environment map on a model
float reflected = reflect(view, normal);
vec4 reflectedColor = textureCube(czm_environmentMap, reflected);

An automatic GLSL uniform containing height (x) and height squared (y) of the eye (camera) in the 2D scene in meters.

  • czm_fogDensity

An automatic GLSL uniform scalar used to mix a color with the fog color based on the distance to the camera.

An automatic GLSL uniform representing the frame number. This uniform is automatically incremented every frame.

  • czm_frustumPlanes

The distances to the frustum planes. The top, bottom, left and right distances are the x, y, z, and w components, respectively.

  • czm_geometricToleranceOverMeter

An automatic GLSL uniform scalar representing the geometric tolerance per meter

  • czm_imagerySplitPosition

An automatic GLSL uniform representing the splitter position to use when rendering imagery layers with a splitter. This will be in pixel coordinates relative to the canvas.

An automatic GLSL uniform representing a 4x4 projection transformation matrix with the far plane at infinity, that transforms eye coordinates to clip coordinates. Clip coordinates is the coordinate system for a vertex shader's gl_Position output. An infinite far plane is used in algorithms like shadow volumes and GPU ray casting with proxy geometry to ensure that triangles are not clipped by the far plane.

Example:
// GLSL declaration
uniform mat4 czm_infiniteProjection;
// Example
gl_Position = czm_infiniteProjection * eyePosition;

An automatic GLSL uniform representing a 4x4 model transformation matrix that transforms world coordinates to model coordinates.

Example:
// GLSL declaration
uniform mat4 czm_inverseModel;
// Example
vec4 modelPosition = czm_inverseModel * worldPosition;

An automatic GLSL uniform representing a 4x4 transformation matrix that transforms from eye coordinates to model coordinates.

Example:
// GLSL declaration
uniform mat4 czm_inverseModelView;
// Example
vec4 modelPosition = czm_inverseModelView * eyePosition;

An automatic GLSL uniform representing a 4x4 transformation matrix that transforms from eye coordinates to 3D model coordinates. In 3D mode, this is identical to czm_inverseModelView, but in 2D and Columbus View it represents the inverse model-view matrix as if the camera were at an equivalent location in 3D mode. This is useful for lighting 2D and Columbus View in the same way that 3D is lit.

Example:
// GLSL declaration
uniform mat4 czm_inverseModelView3D;
// Example
vec4 modelPosition = czm_inverseModelView3D * eyePosition;

An automatic GLSL uniform representing a 4x4 inverse model-view-projection transformation matrix that transforms clip coordinates to model coordinates. Clip coordinates is the coordinate system for a vertex shader's gl_Position output.

Example:
// GLSL declaration
uniform mat4 czm_inverseModelViewProjection;
// Example
vec4 modelPosition = czm_inverseModelViewProjection * clipPosition;

An automatic GLSL uniform representing a 3x3 normal transformation matrix that transforms normal vectors in eye coordinates to model coordinates. This is the opposite of the transform provided by czm_normal.

Example:
// GLSL declaration
uniform mat3 czm_inverseNormal;
// Example
vec3 normalMC = czm_inverseNormal * normalEC;

An automatic GLSL uniform representing a 3x3 normal transformation matrix that transforms normal vectors in eye coordinates to 3D model coordinates. This is the opposite of the transform provided by czm_normal. In 3D mode, this is identical to czm_inverseNormal, but in 2D and Columbus View it represents the inverse normal transformation matrix as if the camera were at an equivalent location in 3D mode. This is useful for lighting 2D and Columbus View in the same way that 3D is lit.

Example:
// GLSL declaration
uniform mat3 czm_inverseNormal3D;
// Example
vec3 normalMC = czm_inverseNormal3D * normalEC;

An automatic GLSL uniform representing a 4x4 inverse projection transformation matrix that transforms from clip coordinates to eye coordinates. Clip coordinates is the coordinate system for a vertex shader's gl_Position output.

Example:
// GLSL declaration
uniform mat4 czm_inverseProjection;
// Example
vec4 eyePosition = czm_inverseProjection * clipPosition;

An automatic GLSL uniform representing a 4x4 transformation matrix that transforms from eye coordinates to world coordinates.

Example:
// GLSL declaration
uniform mat4 czm_inverseView;
// Example
vec4 worldPosition = czm_inverseView * eyePosition;

An automatic GLSL uniform representing a 4x4 transformation matrix that transforms from 3D eye coordinates to world coordinates. In 3D mode, this is identical to czm_inverseView, but in 2D and Columbus View it represents the inverse view matrix as if the camera were at an equivalent location in 3D mode. This is useful for lighting 2D and Columbus View in the same way that 3D is lit.

Example:
// GLSL declaration
uniform mat4 czm_inverseView3D;
// Example
vec4 worldPosition = czm_inverseView3D * eyePosition;

An automatic GLSL uniform representing a 4x4 view-projection transformation matrix that transforms clip coordinates to world coordinates. Clip coordinates is the coordinate system for a vertex shader's gl_Position output.

Example:
// GLSL declaration
uniform mat4 czm_inverseViewProjection;
// Example
vec4 worldPosition = czm_inverseViewProjection * clipPosition;

An automatic GLSL uniform representing a 3x3 rotation matrix that transforms vectors from eye coordinates to world coordinates.

Example:
// GLSL declaration
uniform mat3 czm_inverseViewRotation;
// Example
vec4 worldVector = czm_inverseViewRotation * eyeVector;

An automatic GLSL uniform representing a 3x3 rotation matrix that transforms vectors from 3D eye coordinates to world coordinates. In 3D mode, this is identical to czm_inverseViewRotation, but in 2D and Columbus View it represents the inverse view matrix as if the camera were at an equivalent location in 3D mode. This is useful for lighting 2D and Columbus View in the same way that 3D is lit.

Example:
// GLSL declaration
uniform mat3 czm_inverseViewRotation3D;
// Example
vec4 worldVector = czm_inverseViewRotation3D * eyeVector;
  • czm_invertClassificationColor

An automatic GLSL uniform that will be the highlight color of unclassified 3D Tiles.

  • czm_log2FarPlusOne

An automatic GLSL uniform containing log2 of the far distance + 1.0. This is used when reversing log depth computations.

  • czm_log2NearDistance

An automatic GLSL uniform containing log2 of the near distance. This is used when writing log depth in the fragment shader.

  • czm_minimumDisableDepthTestDistance

An automatic GLSL uniform representing the distance from the camera at which to disable the depth test of billboards, labels and points to, for example, prevent clipping against terrain. When set to zero, the depth test should always be applied. When less than zero, the depth test should never be applied.

An automatic GLSL uniform representing a 4x4 model transformation matrix that transforms model coordinates to world coordinates.

Example:
// GLSL declaration
uniform mat4 czm_model;
// Example
vec4 worldPosition = czm_model * modelPosition;

An automatic GLSL uniform representing a 4x4 model-view transformation matrix that transforms model coordinates to eye coordinates.

Positions should be transformed to eye coordinates using czm_modelView and normals should be transformed using czm_normal.

Example:
// GLSL declaration
uniform mat4 czm_modelView;
// Example
vec4 eyePosition = czm_modelView * modelPosition;
// The above is equivalent to, but more efficient than:
vec4 eyePosition = czm_view * czm_model * modelPosition;

An automatic GLSL uniform representing a 4x4 model-view transformation matrix that transforms 3D model coordinates to eye coordinates. In 3D mode, this is identical to czm_modelView, but in 2D and Columbus View it represents the model-view matrix as if the camera were at an equivalent location in 3D mode. This is useful for lighting 2D and Columbus View in the same way that 3D is lit.

Positions should be transformed to eye coordinates using czm_modelView3D and normals should be transformed using czm_normal3D.

Example:
// GLSL declaration
uniform mat4 czm_modelView3D;
// Example
vec4 eyePosition = czm_modelView3D * modelPosition;
// The above is equivalent to, but more efficient than:
vec4 eyePosition = czm_view3D * czm_model * modelPosition;

An automatic GLSL uniform representing a 4x4 model-view-projection transformation matrix that transforms model coordinates to clip coordinates. Clip coordinates is the coordinate system for a vertex shader's gl_Position output. The projection matrix places the far plane at infinity. This is useful in algorithms like shadow volumes and GPU ray casting with proxy geometry to ensure that triangles are not clipped by the far plane.

Example:
// GLSL declaration
uniform mat4 czm_modelViewInfiniteProjection;
// Example
vec4 gl_Position = czm_modelViewInfiniteProjection * modelPosition;
// The above is equivalent to, but more efficient than:
gl_Position = czm_infiniteProjection * czm_view * czm_model * modelPosition;

An automatic GLSL uniform representing a 4x4 model-view-projection transformation matrix that transforms model coordinates to clip coordinates. Clip coordinates is the coordinate system for a vertex shader's gl_Position output.

Example:
// GLSL declaration
uniform mat4 czm_modelViewProjection;
// Example
vec4 gl_Position = czm_modelViewProjection * modelPosition;
// The above is equivalent to, but more efficient than:
gl_Position = czm_projection * czm_view * czm_model * modelPosition;

An automatic GLSL uniform representing a 4x4 model-view-projection transformation matrix that transforms model coordinates, relative to the eye, to clip coordinates. Clip coordinates is the coordinate system for a vertex shader's gl_Position output. This is used in conjunction with czm_translateRelativeToEye.

Example:
// GLSL declaration
uniform mat4 czm_modelViewProjectionRelativeToEye;
// Example
attribute vec3 positionHigh;
attribute vec3 positionLow;
void main()
{
vec4 p = czm_translateRelativeToEye(positionHigh, positionLow);
gl_Position = czm_modelViewProjectionRelativeToEye * p;
}

An automatic GLSL uniform representing a 4x4 model-view transformation matrix that transforms model coordinates, relative to the eye, to eye coordinates. This is used in conjunction with czm_translateRelativeToEye.

Example:
// GLSL declaration
uniform mat4 czm_modelViewRelativeToEye;
// Example
attribute vec3 positionHigh;
attribute vec3 positionLow;
void main()
{
vec4 p = czm_translateRelativeToEye(positionHigh, positionLow);
gl_Position = czm_projection * (czm_modelViewRelativeToEye * p);
}

An automatic GLSL uniform representing the normalized direction to the moon in eye coordinates. This is commonly used for directional lighting computations.

Example:
// GLSL declaration
uniform vec3 czm_moonDirectionEC;
// Example
float diffuse = max(dot(czm_moonDirectionEC, normalEC), 0.0);

An automatic GLSL uniform representing the current morph transition time between 2D/Columbus View and 3D, with 0.0 being 2D or Columbus View and 1.0 being 3D.

Example:
// GLSL declaration
uniform float czm_morphTime;
// Example
vec4 p = czm_columbusViewMorph(position2D, position3D, czm_morphTime);

An automatic GLSL uniform representing a 3x3 normal transformation matrix that transforms normal vectors in model coordinates to eye coordinates.

Positions should be transformed to eye coordinates using czm_modelView and normals should be transformed using czm_normal.

Example:
// GLSL declaration
uniform mat3 czm_normal;
// Example
vec3 eyeNormal = czm_normal * normal;

An automatic GLSL uniform representing a 3x3 normal transformation matrix that transforms normal vectors in 3D model coordinates to eye coordinates. In 3D mode, this is identical to czm_normal, but in 2D and Columbus View it represents the normal transformation matrix as if the camera were at an equivalent location in 3D mode. This is useful for lighting 2D and Columbus View in the same way that 3D is lit.

Positions should be transformed to eye coordinates using czm_modelView3D and normals should be transformed using czm_normal3D.

Example:
// GLSL declaration
uniform mat3 czm_normal3D;
// Example
vec3 eyeNormal = czm_normal3D * normal;
  • czm_orthographicIn3D

An automatic GLSL uniform that indicates if the current camera is orthographic in 3D.

  • czm_pass

An automatic GLSL uniform representing the current rendering pass.

Example:
// GLSL declaration
uniform float czm_pass;
// Example
if ((czm_pass == czm_passTranslucent) && isOpaque())
{
gl_Position *= 0.0; // Cull opaque geometry in the translucent pass
}

An automatic GLSL uniform representing a 4x4 projection transformation matrix that transforms eye coordinates to clip coordinates. Clip coordinates is the coordinate system for a vertex shader's gl_Position output.

Example:
// GLSL declaration
uniform mat4 czm_projection;
// Example
gl_Position = czm_projection * eyePosition;
  • czm_resolutionScale

An automatic GLSL uniform representing the ratio of canvas coordinate space to canvas pixel space.

Example:
uniform float czm_resolutionScale;
  • czm_sceneMode

An automatic GLSL uniform representing the current SceneMode, expressed as a float.

Example:
// GLSL declaration
uniform float czm_sceneMode;
// Example
if (czm_sceneMode == czm_sceneMode2D)
{
eyeHeightSq = czm_eyeHeight2D.y;
}

An automatic GLSL uniform representing the normalized direction to the sun in eye coordinates. This is commonly used for directional lighting computations.

Example:
// GLSL declaration
uniform vec3 czm_sunDirectionEC;
// Example
float diffuse = max(dot(czm_sunDirectionEC, normalEC), 0.0);

An automatic GLSL uniform representing the normalized direction to the sun in world coordinates. This is commonly used for directional lighting computations.

Example:
// GLSL declaration
uniform vec3 czm_sunDirectionWC;

An automatic GLSL uniform representing the sun position in Columbus view world coordinates.

Example:
// GLSL declaration
uniform vec3 czm_sunPositionColumbusView;

An automatic GLSL uniform representing the sun position in world coordinates.

Example:
// GLSL declaration
uniform vec3 czm_sunPositionWC;

An automatic GLSL uniform representing a 3x3 rotation matrix that transforms from True Equator Mean Equinox (TEME) axes to the pseudo-fixed axes at the current scene time.

Example:
// GLSL declaration
uniform mat3 czm_temeToPseudoFixed;
// Example
vec3 pseudoFixed = czm_temeToPseudoFixed * teme;

An automatic GLSL uniform representing a 4x4 view transformation matrix that transforms world coordinates to eye coordinates.

Example:
// GLSL declaration
uniform mat4 czm_view;
// Example
vec4 eyePosition = czm_view * worldPosition;

An automatic GLSL uniform representing a 4x4 view transformation matrix that transforms 3D world coordinates to eye coordinates. In 3D mode, this is identical to czm_view, but in 2D and Columbus View it represents the view matrix as if the camera were at an equivalent location in 3D mode. This is useful for lighting 2D and Columbus View in the same way that 3D is lit.

Example:
// GLSL declaration
uniform mat4 czm_view3D;
// Example
vec4 eyePosition3D = czm_view3D * worldPosition3D;

An automatic GLSL uniform representing the position of the viewer (camera) in world coordinates.

An automatic GLSL uniform containing the viewport's xywidth, and height properties in an vec4's xyz, and w components, respectively.

Example:
// GLSL declaration
uniform vec4 czm_viewport;
// Scale the window coordinate components to [0, 1] by dividing
// by the viewport's width and height.
vec2 v = gl_FragCoord.xy / czm_viewport.zw;

An automatic GLSL uniform representing a 4x4 orthographic projection matrix that transforms window coordinates to clip coordinates. Clip coordinates is the coordinate system for a vertex shader's gl_Position output.

This transform is useful when a vertex shader inputs or manipulates window coordinates as done by BillboardCollection.

Do not confuse czm_viewportTransformation with czm_viewportOrthographic. The former transforms from normalized device coordinates to window coordinates; the later transforms from window coordinates to clip coordinates, and is often used to assign to gl_Position.

Example:
// GLSL declaration
uniform mat4 czm_viewportOrthographic;
// Example
gl_Position = czm_viewportOrthographic * vec4(windowPosition, 0.0, 1.0);

An automatic GLSL uniform representing a 4x4 transformation matrix that transforms normalized device coordinates to window coordinates. The context's full viewport is used, and the depth range is assumed to be near = 0 and far = 1.

This transform is useful when there is a need to manipulate window coordinates in a vertex shader as done by BillboardCollection. In many cases, this matrix will not be used directly; instead, czm_modelToWindowCoordinates will be used to transform directly from model to window coordinates.

Do not confuse czm_viewportTransformation with czm_viewportOrthographic. The former transforms from normalized device coordinates to window coordinates; the later transforms from window coordinates to clip coordinates, and is often used to assign to gl_Position.

Example:
// GLSL declaration
uniform mat4 czm_viewportTransformation;
// Use czm_viewportTransformation as part of the
// transform from model to window coordinates.
vec4 q = czm_modelViewProjection * positionMC; // model to clip coordinates
q.xyz /= q.w; // clip to normalized device coordinates (ndc)
q.xyz = (czm_viewportTransformation * vec4(q.xyz, 1.0)).xyz; // ndc to window coordinates

An automatic GLSL uniform representing a 4x4 view-projection transformation matrix that transforms world coordinates to clip coordinates. Clip coordinates is the coordinate system for a vertex shader's gl_Position output.

Example:
// GLSL declaration
uniform mat4 czm_viewProjection;
// Example
vec4 gl_Position = czm_viewProjection * czm_model * modelPosition;
// The above is equivalent to, but more efficient than:
gl_Position = czm_projection * czm_view * czm_model * modelPosition;

An automatic GLSL uniform representing a 3x3 view rotation matrix that transforms vectors in world coordinates to eye coordinates.

Example:
// GLSL declaration
uniform mat3 czm_viewRotation;
// Example
vec3 eyeVector = czm_viewRotation * worldVector;

An automatic GLSL uniform representing a 3x3 view rotation matrix that transforms vectors in 3D world coordinates to eye coordinates. In 3D mode, this is identical to czm_viewRotation, but in 2D and Columbus View it represents the view matrix as if the camera were at an equivalent location in 3D mode. This is useful for lighting 2D and Columbus View in the same way that 3D is lit.

Example:
// GLSL declaration
uniform mat3 czm_viewRotation3D;
// Example
vec3 eyeVector = czm_viewRotation3D * worldVector;

内置常量

这里常量和函数的定义,在cesium官网的一个历史文档里有描述,后来版本的文档里没有了。

https://cesiumjs.org/releases/b28/Documentation/index.html

点击glsl,可以看到。

  • czm_epsilon6
  • czm_epsilon7
  • czm_infinity
  • czm_oneOverPi
  • czm_oneOverTwoPi
  • czm_passCesium3DTile
  • czm_passCesium3DTileClassification
  • czm_passCesium3DTileClassificationIgnoreShow
  • czm_passClassification
  • czm_passCompute
  • czm_passEnvironment
  • czm_passGlobe
  • czm_passOpaque
  • czm_passOverlay
  • czm_passTerrainClassification
  • czm_passTranslucent
  • czm_pi
  • czm_piOverFour
  • czm_piOverSix
  • czm_piOverThree
  • czm_piOverTwo
  • czm_radiansPerDegree
  • czm_sceneMode
  • czm_sceneMode2D

内置结构体定义

内置函数

czm_alphaWeight

原文:https://www.cnblogs.com/wanghui2011/articles/10870294.html

CESIUM内置shader变量和函数[转]的更多相关文章

  1. osg内置shader变量

    uniform int osg_FrameNumber:当前OSG程序运行的帧数: uniform float osg_FrameTime:当前OSG程序的运行总时间: uniform float o ...

  2. Unity 内置Shader变量、辅助函数等

    一:标准库里的常用.cginc文件 HLSLSupport.cginc - (automatically included) Helper macros and definitions for cro ...

  3. GLSL语言内置的变量详解

    GLSL语言内置的变量,包括内置的顶点属性(attribute).一致变量(uniform).易变变量(varying)以及常量(const),一方面加深印象,另一方面今天的文章可以为以后的编程做查询 ...

  4. Python内置的字符串处理函数整理

    Python内置的字符串处理函数整理 作者: 字体:[增加 减小] 类型:转载 时间:2013-01-29我要评论 Python内置的字符串处理函数整理,收集常用的Python 内置的各种字符串处理 ...

  5. Flask内置URL变量转换器

    Flask内置URL变量转换器: 转换器通过特定的规则执行,”<转换器: 变量名>”.<int: year>把year的值转换为证书,因此我们可以在视图函数中直接对year变量 ...

  6. python内置常用高阶函数(列出了5个常用的)

    原文使用的是python2,现修改为python3,全部都实际输出过,可以运行. 引用自:http://www.cnblogs.com/duyaya/p/8562898.html https://bl ...

  7. PHP内置的字符串处理函数

    字符串的特点    1.其他类型的数据用在字符串类型处理函数中,会自动将其转化成字符串后,在处理 <?php echo substr("abcdefghijklmn",2,4 ...

  8. thinkPHP内置字符串截取msubstr函数用法详解

    作者:陈达辉 字体:[增加 减小] 类型:转载 时间:2016-11-15 我要评论 这篇文章主要介绍了thinkPHP内置字符串截取函数用法,结合实例形式分析了thinkPHP内置的字符串截取函数功 ...

  9. unity, 查看内置shader源码

    1,建一个球体. 2,建一个材质,将材质拖到球体上. 3,在材质的shader下拉列表中选择想查看的内置shader,点材质栏右上设置按钮->Select Shader 进入shader面板. ...

随机推荐

  1. c的链表实现

    c的链表实现 复习了 单向链表.双向链表 ,代码中注释不多,但基本从函数名字就可以知道函数的作用. 双向链表中的前后节点中的思路是按照linux内核中思路写的. 环境 GCC 7.4.0 单向链表 # ...

  2. 用js刷剑指offer(两个链表的第一个公共结点)

    题目描述 输入两个链表,找出它们的第一个公共结点. 牛客网链接 js代码 /*function ListNode(x){ this.val = x; this.next = null; }*/ fun ...

  3. [牛客网 -leetcode在线编程 -02] minimum-depth-of-binary-tree -树的最短深度

    题目描述 题目描述 Given a binary tree, find its minimum depth.The minimum depth is the number of nodes along ...

  4. MPU-6050

    MPU-6000(6050)为全球首例整合性6轴运动处理组件,相较于多组件方案,免除了组合陀螺仪与加速器时间轴之差的问题,减少了大量的封装空间.当连接到三轴磁强计时,MPU-60X0提供完整的9轴运动 ...

  5. 如何解决redis的并发竞争问题?

    这个也是线上非常常见的一个问题,就是多客户端同时并发写一个key,可能本来应该先到的数据后到了,导致数据版本错了.或者是多客户端同时获取一个key,修改值之后再写回去,只要顺序错了,数据就错了. 而且 ...

  6. Centos7安装nginx后提示“Welcome to nginx on Fedora!”,conf.d目录下无default.conf文件

    问题描述 在腾讯云centos7上安装nginx sudo yum install nginx 打开默认网页显示 Welcome to nginx on Fedora! 且 /etc/nginx/co ...

  7. 神经网络(11)--具体实现:unrolling parameters

    我们需要将parameters从矩阵unrolling到向量,这样我们就可以使用adanced optimization routines. unroll into vectors costFunct ...

  8. IDEA 相关设置汇总

    1.自动提示.代码补全 有时候希望使用自动补全,因为不偷懒的程序员不是好程序员.但是Idea的默认快捷键是 Ctrl + 空格. 对于安装中文输入法的普通人来说那就是杯具了,你懂的. 修改方法如下: ...

  9. FRCN文本检测(转)

    [源码分析]Text-Detection-with-FRCN 原创 2017年11月21日 17:58:39 标签: 659 编辑 删除 Text-Detection-with-FRCN项目是基于py ...

  10. UVa 1671 语言的历史——判断两个DFA是否等价

    题意 一个DFA可以用一个5元组  $((Q, \sum , \delta , q_0, F))$ 表示,其中 $Q$ 为状态集,$\sum$ 为字母表,$\delta$ 为转移函数,$q_0$ 为起 ...