<更新提示>

<第一次更新>


<正文>

炸弹(SNOI2017)

Description

在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸 时,如果另一个炸弹所在位置 Xj 满足:

Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆。 现在,请你帮忙计算一下,先把第 i 个炸弹引爆,将引爆多少个炸弹呢?

Input Format

第一行,一个数字 N,表示炸弹个数。 第 2∼N+1行,每行 2 个数字,表示 Xi,Ri,保证 Xi 严格递增。

N≤500000

−10 ^18≤Xi≤10 ^18

0≤Ri≤2×10 ^18

Output Format

一个数字,表示Sigma(i*炸弹i能引爆的炸弹个数),1<=i<=N mod10^9+7。

Sample Input

4
1 1
5 1
6 5
15 15

Sample Output

32

解析

很自然我们可以将问题转化为图论的模型:每个炸弹当做一个点,向可以连环引爆的其他点连边,然后一个点的答案就是这个点出发\(dfs\)可以遍历到的所有点。

直接连边的话建图就会超时,边数的\(n^2\)的,不难发现每一个点要连边的点处于连续的一段区间中,于是想到线段树优化建图。

什么是线段树优化建图?就是把线段树用邻接表显式的建出来,然后对于一个区间内的连续若干个点的连边,就可以利用线段树区间划分的方式,向不超过\(log_2(r-l+1)\)个线段树节点连边,以达到向这当中所有点连边的目的。

建完图后,我们又发现对每一个点都\(dfs\)会超时,于是想到将互相可达的点先处理掉,也就是\(SCC\)缩点,然后在剩下的\(DAG\)上,反图\(dp\)即可统计每一个点的答案。在这当中,我们需要维护一下每个点可达区间的最小左端点和最大右端点即可。

\(Code:\)

#include <bits/stdc++.h>
using namespace std;
const int N = 500020 , Mod = 1000000007;
struct edge { int ver,next; } e1[N*25],e2[N*25];
struct SegmentTree
{
int l,r,id,re;
#define l(p) ver[p].l
#define r(p) ver[p].r
#define id(p) ver[p].id
#define re(p) ver[p].re
}ver[N<<2];
int n,t1,t2,Head1[N*2],Head2[N*2],indeg[N*2],tot;
int dfn[N*2],low[N*2],ins[N*2],st[N*2],c[N*2],top,num,cnt;
int Min[N*2],Max[N*2];
long long x[N],r[N],ans;
inline void insert1(int x,int y)
{
e1[++t1] = (edge){y,Head1[x]} , Head1[x] = t1;
}
inline void insert2(int x,int y)
{
e2[++t2] = (edge){y,Head2[x]} , Head2[x] = t2;
}
inline void chmin(int &a,int b) { a = min( a , b ); }
inline void chmax(int &a,int b) { a = max( a , b ); }
inline void input(void)
{
scanf("%d",&n);
for ( int i = 1; i <= n; i++ )
scanf("%lld%lld",&x[i],&r[i]);
}
inline void BuildTree(int p,int l,int r)
{
l(p) = l , r(p) = r;
if ( l == r ) { id(p) = l , re(l) = p; return; }
id(p) = ++tot , re(tot) = p;
int mid = l + r >> 1;
BuildTree( p<<1 , l , mid );
BuildTree( p<<1|1 , mid+1 , r );
insert1( id(p) , id(p<<1) );
insert1( id(p) , id(p<<1|1) );
}
inline void connect(int p,int l,int r,int x)
{
if ( l <= l(p) && r >= r(p) ) return insert1( x , id(p) );
int mid = l(p) + r(p) >> 1;
if ( l <= mid ) connect( p<<1 , l , r , x );
if ( r > mid ) connect( p<<1|1 , l , r , x );
}
inline void Tarjan(int x)
{
dfn[x] = low[x] = ++num;
st[++top] = x , ins[x] = true;
for ( int i = Head1[x]; i; i = e1[i].next )
{
int y = e1[i].ver;
if ( !dfn[y] )
{
Tarjan( y );
low[x] = min( low[x] , low[y] );
}
else if ( ins[y] )
low[x] = min( low[x] , dfn[y] );
}
if ( dfn[x] == low[x] )
{
++cnt; int y;
do
{
y = st[top--] , ins[y] = false;
c[y] = cnt;
chmin( Min[cnt] , l(re(y)) );
chmax( Max[cnt] , r(re(y)) );
}
while ( x != y );
}
}
inline void Topsort(void)
{
queue < int > q;
for ( int i = 1; i <= tot; i++ )
if ( !indeg[i] ) q.push(i);
while ( !q.empty() )
{
int x = q.front(); q.pop();
for ( int i = Head2[x]; i; i = e2[i].next )
{
int y = e2[i].ver;
chmin( Min[y] , Min[x] );
chmax( Max[y] , Max[x] );
if ( ! -- indeg[y] ) q.push( y );
}
}
}
inline void BuildGraph(void)
{
for ( int i = 1; i <= n; i++ )
{
int L = lower_bound( x+1 , x+i+1 , x[i] - r[i] ) - x;
int R = upper_bound( x+i+1 , x+n+1 , x[i] + r[i] ) - x - 1;
connect( 1 , L , R , i );
}
}
inline void rebuild(void)
{
for ( int x = 1; x <= tot; x++ )
{
for ( int i = Head1[x]; i; i = e1[i].next )
{
int y = e1[i].ver;
if ( c[x] != c[y] )
insert2( c[y] , c[x] ) , indeg[c[x]]++;
}
}
}
inline void solve(void)
{
for ( int i = 1; i <= n; i++ )
ans = ( ans + 1LL * i * ( Max[c[i]] - Min[c[i]] + 1 ) % Mod ) % Mod;
}
int main(void)
{
input();
tot = n , BuildTree( 1 , 1 , n );
BuildGraph();
memset( Min , 0x3f , sizeof Min );
memset( Max , 0x00 , sizeof Max );
for ( int i = 1; i <= tot; i++ )
if ( !dfn[i] ) Tarjan( i );
rebuild();
Topsort();
solve();
printf("%lld\n",ans);
return 0;
}

<后记>

『炸弹 线段树优化建图 Tarjan』的更多相关文章

  1. 【bzoj5017】[Snoi2017]炸弹 线段树优化建图+Tarjan+拓扑排序

    题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆.  现在 ...

  2. BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan

    Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...

  3. bzoj5017 [Snoi2017]炸弹 (线段树优化建图+)tarjan 缩点+拓扑排序

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5017 题解 这个题目方法挺多的. 线段树优化建图 线段树优化建图的做法应该挺显然的,一个炸弹能 ...

  4. bzoj5017 炸弹 (线段树优化建图+tarjan+拓扑序dp)

    直接建图边数太多,用线段树优化一下 然后缩点,记下来每个点里有多少个炸弹 然后按拓扑序反向dp一下就行了 #include<bits/stdc++.h> #define pa pair&l ...

  5. 炸弹:线段树优化建边+tarjan缩点+建反边+跑拓扑

    这道题我做了有半个月了...终于A了... 有图为证 一句话题解:二分LR线段树优化建边+tarjan缩点+建反边+跑拓扑统计答案 首先我们根据题意,判断出来要炸弹可以连着炸,就是这个炸弹能炸到的可以 ...

  6. 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)

    题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...

  7. [SNOI2017]炸弹[线段树优化建图]

    [SNOI2017]炸弹 线段树优化建图,然后跑一边tarjan把点全部缩起来,炸一次肯定是有连锁反应的所以整个连通块都一样-于是就可以发现有些是只有单向边的不能忘记更新,没了. #include & ...

  8. BZOJ5017 炸弹(线段树优化建图+Tarjan+拓扑)

    Description 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被 ...

  9. Libre OJ 2255 (线段树优化建图+Tarjan缩点+DP)

    题面 传送门 分析 主体思路:若x能引爆y,从x向y连一条有向边,最后的答案就是从x出发能够到达的点的个数 首先我们发现一个炸弹可以波及到的范围一定是坐标轴上的一段连续区间 我们可以用二分查找求出炸弹 ...

随机推荐

  1. 竟然有人在群里谈交钱培训PI。。。。等哥哥有时间,断了你们的财路

    PI是工具,很不错的工具.统一管理接口,这点对大公司来说还是有必要的.而且PI的日志记录很详细,用的好的话,绝对物超所值.

  2. FPM十一:点击POPUP显示明细

    沿接着前面的Search和List.在LIST中点击一列,弹出窗口显示明细. 1.list中定义事件: METHOD if_fpm_guibb_list~get_definition. DATA:gt ...

  3. js 字符串 有没有 像C# @ 那种 换行也可以显示的方法 \

  4. nginx性能调优关键功能

     1. expires缓存时间优化作用:通过在服务器上设置合理的expires缓存时间.适合缓存的类型:静态文件:html,图片,js,css,xml都是缓存对象.优点:能够让用户不必每次访问都要重新 ...

  5. 【Appium】Android 按键码

    keycode也是appium很强大的功能,鉴于官网不翻墙无法打开,特此备忘. 电话键     KEYCODE_CALL 拨号键 5 KEYCODE_ENDCALL 挂机键 6 KEYCODE_HOM ...

  6. 块 /宏块(MB)/片(Slice/片组/图像(picture) 对应关系

    根据包含关系从大到小顺序排列   序列(GOP)-> 帧(I/IDR/P/B)-> 片组 -> 片(slice)-> 宏块(Block)-> 块(Macro  Block ...

  7. classpath环境变量解惑

    只有使用低于JDK1.5版本的JDK时,才需要设置classpath环境变量. 因为早期版本的JDK没有设计在当前路径下搜索Java类的功能,而且编译和运行java程序时还需要JDK的lib路径下的d ...

  8. springmvc controller层接收List类型的参数

    Spring MVC在接收集合请求参数时,需要在Controller方法的集合参数里前添加@RequestBody,而@RequestBody默认接收的enctype (MIME编码)是applica ...

  9. erlang程序设计--顺序编程

    erlang模块的基本结构 基本结构-module(filename).-export([funname/num]). c(filename). 编译erlang模块  .bean 结尾的文件 编译后 ...

  10. Windbg Call Stack(调用堆栈)窗口的使用

    调用堆栈是指向程序计数器当前位置的函数调用链.调用堆栈的顶部函数是当前函数,下一个函数是调用当前函数的函数,依此类推.显示的调用堆栈基于当前程序计数器,除非更改寄存器上下文. 在 WinDbg 中,可 ...