<更新提示>

<第一次更新>


<正文>

炸弹(SNOI2017)

Description

在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸 时,如果另一个炸弹所在位置 Xj 满足:

Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆。 现在,请你帮忙计算一下,先把第 i 个炸弹引爆,将引爆多少个炸弹呢?

Input Format

第一行,一个数字 N,表示炸弹个数。 第 2∼N+1行,每行 2 个数字,表示 Xi,Ri,保证 Xi 严格递增。

N≤500000

−10 ^18≤Xi≤10 ^18

0≤Ri≤2×10 ^18

Output Format

一个数字,表示Sigma(i*炸弹i能引爆的炸弹个数),1<=i<=N mod10^9+7。

Sample Input

4
1 1
5 1
6 5
15 15

Sample Output

32

解析

很自然我们可以将问题转化为图论的模型:每个炸弹当做一个点,向可以连环引爆的其他点连边,然后一个点的答案就是这个点出发\(dfs\)可以遍历到的所有点。

直接连边的话建图就会超时,边数的\(n^2\)的,不难发现每一个点要连边的点处于连续的一段区间中,于是想到线段树优化建图。

什么是线段树优化建图?就是把线段树用邻接表显式的建出来,然后对于一个区间内的连续若干个点的连边,就可以利用线段树区间划分的方式,向不超过\(log_2(r-l+1)\)个线段树节点连边,以达到向这当中所有点连边的目的。

建完图后,我们又发现对每一个点都\(dfs\)会超时,于是想到将互相可达的点先处理掉,也就是\(SCC\)缩点,然后在剩下的\(DAG\)上,反图\(dp\)即可统计每一个点的答案。在这当中,我们需要维护一下每个点可达区间的最小左端点和最大右端点即可。

\(Code:\)

#include <bits/stdc++.h>
using namespace std;
const int N = 500020 , Mod = 1000000007;
struct edge { int ver,next; } e1[N*25],e2[N*25];
struct SegmentTree
{
int l,r,id,re;
#define l(p) ver[p].l
#define r(p) ver[p].r
#define id(p) ver[p].id
#define re(p) ver[p].re
}ver[N<<2];
int n,t1,t2,Head1[N*2],Head2[N*2],indeg[N*2],tot;
int dfn[N*2],low[N*2],ins[N*2],st[N*2],c[N*2],top,num,cnt;
int Min[N*2],Max[N*2];
long long x[N],r[N],ans;
inline void insert1(int x,int y)
{
e1[++t1] = (edge){y,Head1[x]} , Head1[x] = t1;
}
inline void insert2(int x,int y)
{
e2[++t2] = (edge){y,Head2[x]} , Head2[x] = t2;
}
inline void chmin(int &a,int b) { a = min( a , b ); }
inline void chmax(int &a,int b) { a = max( a , b ); }
inline void input(void)
{
scanf("%d",&n);
for ( int i = 1; i <= n; i++ )
scanf("%lld%lld",&x[i],&r[i]);
}
inline void BuildTree(int p,int l,int r)
{
l(p) = l , r(p) = r;
if ( l == r ) { id(p) = l , re(l) = p; return; }
id(p) = ++tot , re(tot) = p;
int mid = l + r >> 1;
BuildTree( p<<1 , l , mid );
BuildTree( p<<1|1 , mid+1 , r );
insert1( id(p) , id(p<<1) );
insert1( id(p) , id(p<<1|1) );
}
inline void connect(int p,int l,int r,int x)
{
if ( l <= l(p) && r >= r(p) ) return insert1( x , id(p) );
int mid = l(p) + r(p) >> 1;
if ( l <= mid ) connect( p<<1 , l , r , x );
if ( r > mid ) connect( p<<1|1 , l , r , x );
}
inline void Tarjan(int x)
{
dfn[x] = low[x] = ++num;
st[++top] = x , ins[x] = true;
for ( int i = Head1[x]; i; i = e1[i].next )
{
int y = e1[i].ver;
if ( !dfn[y] )
{
Tarjan( y );
low[x] = min( low[x] , low[y] );
}
else if ( ins[y] )
low[x] = min( low[x] , dfn[y] );
}
if ( dfn[x] == low[x] )
{
++cnt; int y;
do
{
y = st[top--] , ins[y] = false;
c[y] = cnt;
chmin( Min[cnt] , l(re(y)) );
chmax( Max[cnt] , r(re(y)) );
}
while ( x != y );
}
}
inline void Topsort(void)
{
queue < int > q;
for ( int i = 1; i <= tot; i++ )
if ( !indeg[i] ) q.push(i);
while ( !q.empty() )
{
int x = q.front(); q.pop();
for ( int i = Head2[x]; i; i = e2[i].next )
{
int y = e2[i].ver;
chmin( Min[y] , Min[x] );
chmax( Max[y] , Max[x] );
if ( ! -- indeg[y] ) q.push( y );
}
}
}
inline void BuildGraph(void)
{
for ( int i = 1; i <= n; i++ )
{
int L = lower_bound( x+1 , x+i+1 , x[i] - r[i] ) - x;
int R = upper_bound( x+i+1 , x+n+1 , x[i] + r[i] ) - x - 1;
connect( 1 , L , R , i );
}
}
inline void rebuild(void)
{
for ( int x = 1; x <= tot; x++ )
{
for ( int i = Head1[x]; i; i = e1[i].next )
{
int y = e1[i].ver;
if ( c[x] != c[y] )
insert2( c[y] , c[x] ) , indeg[c[x]]++;
}
}
}
inline void solve(void)
{
for ( int i = 1; i <= n; i++ )
ans = ( ans + 1LL * i * ( Max[c[i]] - Min[c[i]] + 1 ) % Mod ) % Mod;
}
int main(void)
{
input();
tot = n , BuildTree( 1 , 1 , n );
BuildGraph();
memset( Min , 0x3f , sizeof Min );
memset( Max , 0x00 , sizeof Max );
for ( int i = 1; i <= tot; i++ )
if ( !dfn[i] ) Tarjan( i );
rebuild();
Topsort();
solve();
printf("%lld\n",ans);
return 0;
}

<后记>

『炸弹 线段树优化建图 Tarjan』的更多相关文章

  1. 【bzoj5017】[Snoi2017]炸弹 线段树优化建图+Tarjan+拓扑排序

    题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆.  现在 ...

  2. BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan

    Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...

  3. bzoj5017 [Snoi2017]炸弹 (线段树优化建图+)tarjan 缩点+拓扑排序

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5017 题解 这个题目方法挺多的. 线段树优化建图 线段树优化建图的做法应该挺显然的,一个炸弹能 ...

  4. bzoj5017 炸弹 (线段树优化建图+tarjan+拓扑序dp)

    直接建图边数太多,用线段树优化一下 然后缩点,记下来每个点里有多少个炸弹 然后按拓扑序反向dp一下就行了 #include<bits/stdc++.h> #define pa pair&l ...

  5. 炸弹:线段树优化建边+tarjan缩点+建反边+跑拓扑

    这道题我做了有半个月了...终于A了... 有图为证 一句话题解:二分LR线段树优化建边+tarjan缩点+建反边+跑拓扑统计答案 首先我们根据题意,判断出来要炸弹可以连着炸,就是这个炸弹能炸到的可以 ...

  6. 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)

    题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...

  7. [SNOI2017]炸弹[线段树优化建图]

    [SNOI2017]炸弹 线段树优化建图,然后跑一边tarjan把点全部缩起来,炸一次肯定是有连锁反应的所以整个连通块都一样-于是就可以发现有些是只有单向边的不能忘记更新,没了. #include & ...

  8. BZOJ5017 炸弹(线段树优化建图+Tarjan+拓扑)

    Description 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被 ...

  9. Libre OJ 2255 (线段树优化建图+Tarjan缩点+DP)

    题面 传送门 分析 主体思路:若x能引爆y,从x向y连一条有向边,最后的答案就是从x出发能够到达的点的个数 首先我们发现一个炸弹可以波及到的范围一定是坐标轴上的一段连续区间 我们可以用二分查找求出炸弹 ...

随机推荐

  1. 软件架构的演进,了解单体架构,垂直架构,SOA架构和微服务架构的变化历程

    软件架构演进 软件架构的发展经历了从单体结构.垂直架构.SOA架构到微服务架构的过程,博客里写到了这四种架它们的特点以及优缺点分析,个人学习之用,仅供参考! 1.1.1      单体架构 特点: 1 ...

  2. Java数据类型(2)------自动封装拆箱

    目的: 自动装箱和拆箱从Java 1.5开始引入,目的是将原始类型值转自动地转换成对应的对象,以使用对象的API和引用类型操作.自动装箱与拆箱的机制可以让我们在Java的变量赋值或者是方法调用等情况下 ...

  3. PTA 根据后序中序遍历输出先序遍历

    本题要求根据给定的一棵二叉树的后序遍历和中序遍历结果,输出该树的先序遍历结果. 输入格式: 第一行给出正整数N(≤30),是树中结点的个数.随后两行,每行给出N个整数,分别对应后序遍历和中序遍历结果, ...

  4. tf.variable_scope()和tf.name_scope()

    1.tf.variable_scope 功能:tf.variable_scope可以让不同命名空间中的变量取相同的名字,无论tf.get_variable或者tf.Variable生成的变量 Tens ...

  5. tomcat 多实例部署

    tomcat 配置多个实例 参考文档 聊聊 Tomcat 的单机多实例 https://www.cnblogs.com/mafly/p/tomcat.html 极客学院 Tomcat 8 权威指南 h ...

  6. 【oracle】定时任务存储过程带参

    DECLAREX NUMBER;--随机一个job编号BEGINSYS.DBMS_JOB.SUBMIT( job => X,what => 'SHEVERYDAYJOB(TO_CHAR(S ...

  7. Pandas | 28 与SQL比较

    由于许多潜在的Pandas用户对SQL有一定的了解,因此本文章旨在提供一些如何使用Pandas执行各种SQL操作的示例. 文件:tips.csv - total_bill,tip,sex,smoker ...

  8. 修改了celery任务老是执行失败,跟shell中调试的结果不同

    因为没有重启celery,没有删除celerybeat-schedule,导致使用的task任务一直是原来缓存的,所以代码一直无法生效,也是日了狗了

  9. NDCG、AUC介绍

    https://blog.csdn.net/u014313009/article/details/38944687 SIGIR的一篇推荐算法论文中提到用NDCG和AUC作为比较效果的指标,之前没了解过 ...

  10. Docker ubuntn 使用apt-get update报错

    在docker 容器中执行apt-get update有时候会报错,当然造成错误的原因有很多情况,具体情况具体分析, APT Hash sum mismatch错误的常见解决方法总结这篇博客写的不错, ...