BSGS和EXBSGS
\(Description\)
给定\(a,b,p\),求一个\(x\)使其满足\(a^x\equiv b\ \left(mod\ p\right)\)
\(BSGS\)
\(BSGS\)可以解决\(p\)为质数的情况
令 \(m=\lceil \sqrt p\rceil\)
令 \(x=i\cdot m-k\)
有 \(a^{i\cdot m-k} \equiv b\ (mod\ p)\)
两边同乘 \(a^k\) 得 \(a^{i\cdot m}\equiv b\cdot a^k\ (mod\ p)\)
我们先将右边的 \(b\cdot a^k\) 全部求出来存到一个表里,这样预处理时间复杂度为 \(\sqrt p\)
之后再枚举 \(i\) 到 \(\sqrt p\) ,看表里有没有 \(a^{i\cdot m}\ mod\ p\),有的话就有一组解
再反向求出\(x\)即可
\(EXBSGS\)
当\(p\)不是质数时
令 \(g=gcd(a,p)\)
有 \(a^{x-1}\cdot \dfrac{a}{g}\cdot g \equiv \dfrac{b}{g}\cdot g\ \left(mod\ \dfrac{p}{g}\cdot g\right)\)
把那个\(g\)除掉
\(a^{x-1}\cdot \dfrac{a}{g} \equiv \dfrac{b}{g}\ \left(mod\ \dfrac{p}{g} \right)\)
然后重复这个过程直到\(a,p\)互质
\(p\)除掉\(gcd(a,p)\)后可能仍与\(a\)有公约数,与\(\frac{a}{gcd(a,p)}\)互质
显然,在这个过程中如果\(p\)不能被\(b\)整除就无解
到最后会得到这样的方程
\(a^{x-i}\cdot c\equiv t\ \left(mod\ p\right)\)
\(c\)是由\(a\)的幂除以若干个因子得到的 \(c,t\)肯定互质
两边乘以\(c^{-1}\)(逆元)
\(a^{x-i}\equiv t\cdot c^{-1}\ \left(mod\ p\right)\)
用\(BSGS\)对\(x-i\)求解即可
最后记得加上\(i\)
\(Code\)
\(BSGS\)
ksm(a,b);//return a^b
gcd(a,b);//return gcd(a,b)
//{{{bsgs
int bsgs (int a,int b,int p)//return a^x ≡ b mod p 's x
{
a%=p;
if (!a&&!b) return 1;
if (!a) return -1;
int m=sqrt(p);
map <int,int> mp;//这里用的map 也可以自己打个哈希
int t=b%p;
mp[t]=0;
for (int i=1;i<=m;++i) mp[t=1ll*t*a%p]=i;
t=1;
int mi=ksm(a,m);
for (int i=1;1ll*i*i<=p+1;++i){
t=1ll*t*mi%p;
if (mp.count(t)) return ((1ll*i*m%p-mp[t])%p+p)%p;
}
return -1;
}
//}}}
\(EXBSGS\)
//{{{exbsgs
int exbsgs (int a,int b,int p)//a^x ≡ b mod p 's x
{
if (b==1) return 0;
int cnt=0,t=1;
for (int g=gcd(a,p);g!=1;g=gcd(a,p)){
if (b%g) return -1;
++cnt,b/=g,p/=g;
t=1ll*t*a/g%p;
if (b==t) return cnt;
}
int x=bsgs(a,1ll*ksm(t,p-2)*b%p,p);
if (x!=-1) x+=cnt;
return x;
}
//}}}
如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧
BSGS和EXBSGS的更多相关文章
- 知识点简单总结——BSGS与EXBSGS
知识点简单总结--BSGS与EXBSGS BSGS 给出 $ A,B,C,(A,C)=1 $ ,要你求最小的 $ x $ ,使得 $ A^x \equiv B(mod \ C) $ . 在数论题中经常 ...
- BSGS与exBSGS学习笔记
\(BSGS\)用于解决这样一类问题: 求解\(A^x ≡B(modP)\)的最小\(x\),其中\(P\)为质数. 这里我们采用分块的方法,把\(x\)分解为\(i *t-b\)(其中\(t\)是分 ...
- 省选算法学习-BSGS与exBSGS与二次剩余
前置知识 扩展欧几里得,快速幂 都是很基础的东西 扩展欧几里得 说实话这个东西我学了好几遍都没有懂,最近终于搞明白,可以考场现推了,故放到这里来加深印象 翡蜀定理 方程$ax+by=gcd(a,b)$ ...
- 「算法笔记」BSGS 与 exBSGS
一.离散对数 给定 \(a,b,m\),存在一个 \(x\),使得 \(\displaystyle a^x\equiv b\pmod m\) 则称 \(x\) 为 \(b\) 在模 \(m\) 意义下 ...
- 关于 BSGS 以及 ExBSGS 算法的理解
BSGS 引入 求解关于\(X\)的方程, \[A^X\equiv B \pmod P \] 其中\(Gcd(A,P)=1\) 求解 我们令\(X=i*\sqrt{P}-j\),其中\(0<=i ...
- 浅谈BSGS和EXBSGS
我的 BSGS 和各位犇犇的差不多,但是不需要求逆元 Luogu [ TJOI2007 ] 可爱的质数 原题展现 题目描述 给定一个质数 \(p\),以及一个整数 \(b\),一个整数 \(n\),现 ...
- BSGS&EXBSGS 大手拉小手,大步小步走
大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...
- 模板BSGS(SDOI2011计算器) 模板EXBSGS
BSGS和EXBSGS是OI中用于解决A^xΞB(mod C)的常用算法. 1.BSGS BSGS用于A,C互质的情况. 令m=sqrt(C),此时x可表示为i*m+j. 式中i和j都<=sqr ...
- WC2019 20天训练
Day -1 2019.1.2 初步计划: 0x60 图论 std 洛谷提高剩余练习 NOIP2018遗留题解 洛谷省选基础练习 数学: 1.数论 2.组合数学(练习:莫比乌斯反演) 3.概率(练习: ...
随机推荐
- strace命令 二
让我们看一台高负载服务器的 top 结果: top 技巧:运行 top 时,按「1」打开 CPU 列表,按「shift+p」以 CPU 排序. 在本例中大家很容易发现 CPU 主要是被若干个 PHP ...
- Mysql中 查询慢的 Sql语句的记录查找
Mysql中 查询慢的 Sql语句的记录查找 慢查询日志 slow_query_log,是用来记录查询比较慢的sql语句,通过查询日志来查找哪条sql语句比较慢,这样可以对比较慢的sql可以进行优化. ...
- Linux 服务器远程管理
一.Linux 常用远程管理工具 点击下载 二.查看服务器 ip 地址命令 1.通过 ip addr 查看网卡 ip 地址 ip addr 2.通过 ifconfig 查看网卡 ip 地址 最小化安装 ...
- C++ 11 线程调用类的成员函数解决办法
在C++中,_beginthreadex 创建线程是很麻烦的.要求入口函数必须是类的静态函数. 通常,可以采用thunk,或者模板来实现. 因C++ 11中引入了 std::async ,可以很好的解 ...
- 003-结构型-07-享元模式(Flyweight)
一.概述 提供了减少对象数且从而改善应用所需的对象结构的方式.运用共享技术有效地支持大是细粒度的对象. 它通过与其他类似对象共享数据来减小内存占用.它使用共享物件,用来尽可能减少内存使用量以及分享资讯 ...
- declaration of 'int ret' shadows a parameter
定义的变量名称重复, 例如: int look_up_max(int m, int n) { int m; //... return m; }
- TCP和TLS/SSL会话细节
TCP数据段格式说明TCP建立连接和断开连接细节Https如何保证通信安全一次Https网络请求通信细节网络数据包分析工具wireshark的使用问题:SYN.ACK.FIN具体含义是什么?TCP建立 ...
- python之参数解析模块argparse
2.7之后python不再对optparse模块进行扩展,python标准库推荐使用argparse模块对命令行进行解析. 简单入门 先来看个例子: argparse_test.py: import ...
- AD域 域管理员常用命令
简介: 暂时我需要管理60台终端计算机,但是分布的比较广泛,在我们单位整个场区零零散散的分布,巡检一圈仅步行时间就超过30分钟. 为了更好的管理终端计算机,现在正在实验性的配置域,用域来管理这些计算机 ...
- 【redis】 windows 32x 64x
下载地址:http://files.cnblogs.com/files/dtdxrk/redis_win.zip