题意翻译

约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体.

通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 速公路.在高速公路上的通行几乎是瞬间完成的,所以高速公路的通行时间为0.

请帮助约翰决定对哪些小径进行升级,使他每天从1号牧场到第N号牧场所花的时间最短

解析

提高练习场看到这题,瞄一眼,诶,这不是分层图裸题吗???

【啥是分层图】

分层图,简单来说,就是把一张图复制多次,分为多份,每层图代表一种异于其它层次的图的状态。在这些互相平行本无干扰的图中,我们加入一些关键边,相当于该图某种特定状态到另一种状态的转移。类似动态规划,在转移后,我们就无法回到之前的状态了。

【这题咋做】

把图分为k层,对于题述每条边,我们不仅要在每层图上连一次权值为\(d\)的边,构造分层图,还要在每层图之间连一次权值为\(0\)的边,以添加转移边。

如果最短路经过了一条权值为\(0\)的边,就相当于把一条路升级了,要升k次,我们就建k层图。显然,由于我们取的是最短路,不会存在重复升级的情况(想一想,为什么)。

参考代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 3000010
#define MOD 2520
#define E 1e-12
#define ll long long
using namespace std;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
struct rec{
int next,ver,edge;
}g[N<<1];
int head[N],tot,n,m,k;
ll d[N];
bool v[N];
priority_queue<pair<ll,int>,vector<pair<ll,int> >,greater<pair<ll,int> > > q;
inline void add(int x,int y,int val)
{
g[++tot].ver=y,g[tot].edge=val;
g[tot].next=head[x],head[x]=tot;
}
inline void dijkstra(int s)
{
memset(v,0,sizeof(v));
memset(d,0x3f,sizeof(d));
d[s]=0;q.push(make_pair(0,s));
while(q.size()){
int x=q.top().second;q.pop();
if(v[x]) continue;
v[x]=1;
for(int i=head[x];i;i=g[i].next){
int y=g[i].ver,z=g[i].edge;
if(d[y]>d[x]+z){
d[y]=d[x]+z;
q.push(make_pair(d[y],y));
}
}
}
}
int main()
{
n=read(),m=read(),k=read();
for(int i=1;i<=m;++i){
int u=read(),v=read(),val=read();
for(int j=0;j<=k;++j){
add(u+j*n,v+j*n,val),add(v+j*n,u+j*n,val);
add(u+j*n,v+j*n+n,0),add(v+j*n,u+j*n+n,0);
}
}
dijkstra(1);
printf("%lld\n",d[(k+1)*n]);
return 0;
}

P2939 [USACO09FEB]改造路[分层图最短路]的更多相关文章

  1. 洛谷P2939 [USACO09FEB]改造路Revamping Trails(最短路)

    题目描述 Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= ...

  2. P2939 [USACO09FEB]改造路Revamping Trails

    P2939 [USACO09FEB]改造路Revamping Trails 同bzoj2763.不过dbzoj太慢了,bzoj又交不了. 裸的分层图最短路. f[i][j]表示免费走了j条路到达i的最 ...

  3. 洛谷 P2939 [USACO09FEB]改造路Revamping Trails 题解

    P2939 [USACO09FEB]改造路Revamping Trails 题目描述 Farmer John dutifully checks on the cows every day. He tr ...

  4. P2939 [USACO09FEB]改造路Revamping Trails(分层图最短路)

    传送门 完了我好像连分层图最短路都不会了……果然还是太菜了…… 具体来说就是记录一个步数表示免费了几条边,在dijkstra的时候以步数为第一关键字,距离为第二关键字.枚举边的时候分别枚举免不免费下一 ...

  5. 【bzoj2834】回家的路 分层图最短路

    题目描述 输入 输出 样例输入 2 1 1 2 1 1 2 2 样例输出 5 题解 分层图最短路 dis[i][0]表示到i为横向时起点到i的最短路,dis[i][1]表示到i为纵向时起点到i的最短路 ...

  6. LUOGU P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

  7. 洛谷P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有\(N\))个牧场.由\(M\)条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场\(1\)出发到牧场\(N\)去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰 ...

  8. 洛谷 P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

  9. 【luogu P2939 [USACO09FEB]改造路Revamping Trails】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2939 本来说是双倍经验题,跟飞行路线一样的,结果我飞行路线拿deque优化SPFA过了这里过不了了. 所以多 ...

随机推荐

  1. python json模块(15)

    JSON 的全称是 JavaScript Object Notation,即 JavaScript 对象符号,它是一种轻量级.跨平台.跨语言的数据交换格式,其设计意图是把所有事情都用设计的字符串来表示 ...

  2. TCP/IP学习笔记5--网络的构成要素

    人的灵魂来自一个完美的家园,那里没有任何污秽和丑陋,只有纯净和美丽.----大鱼海棠 1.通信媒介与数据链路 计算机之间通过各种电缆相互连接. 2.网卡 任何一台计算机接入网络都需要网卡,又称网络适配 ...

  3. CEF4Delphi 常用设置

    CEF4Delphi是由 SalvadorDíazFau 创建的一个开源项目,用于在基于Delphi的应用程序中嵌入基于Chromium的浏览器. CEF4Delphi 基于Henri Gourves ...

  4. flask框架(四)——flask CBV视图类解析

    CBV视图类的两种基本写法 #第一种写法class IndexView(views.View): methods = ['GET'] decorators = [auth, ] def dispatc ...

  5. 解决unzip解压中文乱码问题

    使用 unzip XXX.zip 方式解压的时候会出现中文乱码 很多人推荐以下方式: 在windows执行命令,可显示字符集数字一般为936: # chcp // 解压时加上-O cp936,xxx为 ...

  6. 分享大麦UWP版本开发历程-02.内容“高度/宽度”不同的列表展示

    一个成型的产品,肯定是经过了产品经理出的UE,美工设计的UI,最终到我们手里Coding,这里面最少3个人,最多就不知道会有多少人参与了.每个人脑子想的都是不一样的,我就不粘贴那个“XX眼中的XX”那 ...

  7. 【Java拾遗】Java transient关键字

    1. transient的作用及使用方法 2. transient使用小结 3. transient使用细节--被transient关键字修饰的变量真的不能被序列化吗? 1. transient的作用 ...

  8. Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient报错,问题排查

    背景 最近在整合pyspark与hive,新安装spark-2.3.3以客户端的方式访问hive数据,运行方式使用spark on yarn,但是在配置spark读取hive数据的时候,这里直接把hi ...

  9. android 常用库的地址--dialog,recycler

    android 弹出框     https://github.com/li-xiaojun/XPopup android  RecyclerViewAdapter     https://github ...

  10. mybatis generator对于同一个表生成多次代码的问题

    原文:https://blog.csdn.net/jiangjun0130/article/details/83055336 现象: mybatis generator是一个持久层代码自动生成工具,能 ...