Musical Theme

Time Limit: 1000MS Memory Limit: 30000K

Total Submissions: 28435 Accepted: 9604

Description

A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the range 1..88, each representing a key on the piano. It is unfortunate but true that this representation of melodies ignores the notion of musical timing; but, this programming task is about notes and not timings.

Many composers structure their music around a repeating &qout;theme&qout;, which, being a subsequence of an entire melody, is a sequence of integers in our representation. A subsequence of a melody is a theme if it:

is at least five notes long

appears (potentially transposed – see below) again somewhere else in the piece of music

is disjoint from (i.e., non-overlapping with) at least one of its other appearance(s)

Transposed means that a constant positive or negative value is added to every note value in the theme subsequence.

Given a melody, compute the length (number of notes) of the longest theme.

One second time limit for this problem’s solutions!

Input

The input contains several test cases. The first line of each test case contains the integer N. The following n integers represent the sequence of notes.

The last test case is followed by one zero.

Output

For each test case, the output file should contain a single line with a single integer that represents the length of the longest theme. If there are no themes, output 0.

Sample Input

30

25 27 30 34 39 45 52 60 69 79 69 60 52 45 39 34 30 26 22 18

82 78 74 70 66 67 64 60 65 80

0

Sample Output

5

Hint

Use scanf instead of cin to reduce the read time.

Source

LouTiancheng@POJ

/*
后缀数组+二分答案.
先将原数组差分.
求出height数组后二分答案判定.
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#define MAXN 20001
using namespace std;
int n,m=188,ans,s[MAXN],sa[MAXN],ht[MAXN],rank[MAXN],t1[MAXN],t2[MAXN],c[190],ch[MAXN];
bool cmp(int *y,int a,int b,int k)
{
int a1=y[a],b1=y[b];
int a2=a+k>=n?-1:y[a+k];
int b2=b+k>=n?-1:y[b+k];
return a1==b1&&a2==b2;
}
void slovesa()
{
int *x=t1,*y=t2;
for(int i=0;i<n;i++) c[x[i]=s[i]]++;
for(int i=1;i<m;i++) c[i]+=c[i-1];
for(int i=n-1;i>=0;i--) sa[--c[x[i]]]=i;
for(int k=1,p=0;k<=n;k<<=1,m=p,p=0)
{
for(int i=n-k;i<n;i++) y[p++]=i;
for(int i=0;i<n;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
for(int i=0;i<m;i++) c[i]=0;
for(int i=0;i<n;i++) c[x[y[i]]]++;
for(int i=1;i<m;i++) c[i]+=c[i-1];
for(int i=n-1;i>=0;i--) sa[--c[x[y[i]]]]=y[i];
swap(x,y),p=1,x[sa[0]]=0;
for(int i=1;i<n;i++)
{
if(cmp(y,sa[i-1],sa[i],k)) x[sa[i]]=p-1;
else x[sa[i]]=p++;
}
if(p>=n) break;
}
}
void sloveheight()
{
int k=0;
for(int i=0;i<n;i++) rank[sa[i]]=i;
for(int i=0;i<n;ht[rank[i++]]=k)
{
if(!rank[i]) continue;
int j=sa[rank[i]-1];
if(k) k--;
while(j+k<n&&i+k<n&&s[j+k]==s[i+k]) k++;
}
ht[0]=0;
}
bool check(int x)
{
int lans=1e9,rans=0;
for(int i=1;i<n;i++)
{
if(ht[i]>=x)
{
lans=min(lans,min(sa[i],sa[i-1]));
rans=max(rans,max(sa[i],sa[i-1]));
}
else {
if(rans-lans>x) return true;
rans=0;lans=n+1;
}
}
if(rans-lans>x) return true;
return false;
}
void erfen(int l,int r)
{
int mid;
while(l<=r)
{
mid=(l+r)>>1;
if(check(mid)) ans=mid,l=mid+1;
else r=mid-1;
}
}
void Clear()
{
ans=0,m=188;
memset(t1,0,sizeof t1);
memset(t2,0,sizeof t2);
memset(c,0,sizeof c);
memset(sa,0,sizeof sa);
memset(ht,0,sizeof ht);
memset(rank,0,sizeof rank);
memset(ch,0,sizeof ch);
}
int main()
{
while(~scanf("%d",&n)!=EOF)
{
if(!n) break;Clear();
for(int i=0;i<n;i++) scanf("%d",&ch[i]);
for(int i=0;i<n-1;i++) s[i]=ch[i+1]-ch[i]+89;
slovesa(),
sloveheight(),
erfen(0,n);
if(ans+1>=5) printf("%d\n",ans+1);
else printf("0\n");
}
return 0;
}

Poj 1743 Musical Theme(后缀数组+二分答案)的更多相关文章

  1. Poj 1743 Musical Theme (后缀数组+二分)

    题目链接: Poj  1743 Musical Theme 题目描述: 给出一串数字(数字区间在[1,88]),要在这串数字中找出一个主题,满足: 1:主题长度大于等于5. 2:主题在文本串中重复出现 ...

  2. POJ 1743 Musical Theme ——后缀数组

    [题目分析] 其实找最长的不重叠字串是很容易的,后缀数组+二分可以在nlogn的时间内解决. 但是转调是个棘手的事情. 其实只需要o(* ̄▽ ̄*)ブ差分就可以了. 背板题. [代码] #include ...

  3. POJ 1743 Musical Theme 后缀数组 最长重复不相交子串

    Musical ThemeTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=1743 Description ...

  4. [poj 1743] Musical Theme 后缀数组 or hash

    Musical Theme 题意 给出n个1-88组成的音符,让找出一个最长的连续子序列,满足以下条件: 长度大于5 不重叠的出现两次(这里的出现可以经过变调,即这个序列的每个数字全都加上一个整数x) ...

  5. poj 1743 Musical Theme (后缀数组+二分法)

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16162   Accepted: 5577 De ...

  6. POJ 1743 Musical Theme ( 后缀数组 && 最长不重叠相似子串 )

    题意 : 给 n 个数组成的串,求是否有多个“相似”且不重叠的子串的长度大于等于5,两个子串相似当且仅当长度相等且每一位的数字差都相等. 分析 :  根据题目对于 “ 相似 ” 串的定义,我们可以将原 ...

  7. POJ.1743.Musical Theme(后缀数组 倍增 二分 / 后缀自动机)

    题目链接 \(Description\) 给定一段数字序列(Ai∈[1,88]),求最长的两个子序列满足: 1.长度至少为5 2.一个子序列可以通过全部加或减同一个数来变成另一个子序列 3.两个子序列 ...

  8. POJ 1743 Musical Theme 后缀数组 不可重叠最长反复子串

    二分长度k 长度大于等于k的分成一组 每组sa最大的和最小的距离大于k 说明可行 #include <cstdio> #include <cstring> #include & ...

  9. Poj 3261 Milk Patterns(后缀数组+二分答案)

    Milk Patterns Case Time Limit: 2000MS Description Farmer John has noticed that the quality of milk g ...

随机推荐

  1. CacheManager.Core

    GitHub地址:https://github.com/MichaCo/CacheManager CacheManager的优点: 让开发人员的生活更容易处理和配资缓存,即使是非常复杂的缓存方案. C ...

  2. Java 并发框架Disruptor(七)

    Disruptor VS BlockingQueue的压测对比: import java.util.concurrent.ArrayBlockingQueue; public class ArrayB ...

  3. Linux中etc目录详解大全总汇详解

    /etc etc不是什么缩写,是and so on的意思 来源于 法语的 et cetera 翻译成中文就是 等等 的意思. 至于为什么在/etc下面存放配置文件, 按照原始的UNIX的说法(Linu ...

  4. python day7: time,datetime,sys,pickle,json模块

    目录 python day 7 1. time模块 2. datetime模块 2.1 date类 2.2 time类 2.3 datetime类 2.4 timedelta类 2.5 tzinfo时 ...

  5. linux识别ntfs U盘

    NTFS-3G 是一个开源的软件,可以实现 Linux.Free BSD.Mac OSX.NetBSD 和 Haiku 等操作系统中的 NTFS 读写支持 下载最新ntfs-3g源代码,编译安装 # ...

  6. js常用的数组去重方法

    给出以下数组 var arr1 = new Array('1','2','3','3','5','4','5','6','5','5','88'); 实现对数组的去重 1. 双重for循环去重 Arr ...

  7. Github的fork进行同步

    最近项目要求每个开发人员都有自己fork,需要在自己的fork下进行开发.这样就涉及的到fork和原仓库的同步问题. 在网上查找到fork和原仓库同步的方法,如下转载自网上查找的内容,使用终端命令行进 ...

  8. datatables 自定义排序

    参考:https://datatables.net/examples/plug-ins/sorting_manual $.fn.dataTable.ext.type.order['salary-gra ...

  9. SpringBoot AOP概念及使用Demo

    AOP核心概念1.横切关注点 对哪些方法进行拦截,拦截后怎么处理,这些关注点称之为横切关注点2.切面(aspect)->(通知+切点) 类是对物体特征的抽象,切面就是对横切关注点的抽象.通知+切 ...

  10. Windows 下的常规命令(收藏)

    1. gpedit.msc-----组策略 2. sndrec32-------录音机 3. Nslookup-------IP地址侦测器 4. explorer-------打开资源管理器 5. l ...