[LeetCode] 633. Sum of Square Numbers 平方数之和
Given a non-negative integer c
, your task is to decide whether there're two integers a
and b
such that a2 + b2 = c.
Example 1:
Input: 5
Output: True
Explanation: 1 * 1 + 2 * 2 = 5
Example 2:
Input: 3
Output: False
这道题让我们求一个数是否能由平方数之和组成,刚开始博主没仔细看题,没有看到必须要是两个平方数之和,博主以为任意一个就可以。所以写了个带优化的递归解法,博主已经不是上来就无脑暴力破解的辣个青葱骚年了,直接带优化。可是居然对 14 返回 false,难道 14 不等于 1+4+9 吗,结果仔细一看,必须要两个平方数之和。好吧,那么递归都省了,直接判断两次就行了。我们可以从c的平方根,注意即使c不是平方数,也会返回一个整型数。然后我们判断如果 i*i 等于c,说明c就是个平方数,只要再凑个0,就是两个平方数之和,返回 true;如果不等于的话,那么算出差值 c - i*i,如果这个差值也是平方数的话,返回 true。遍历结束后返回 false,参见代码如下:
解法一:
class Solution {
public:
bool judgeSquareSum(int c) {
for (int i = sqrt(c); i >= ; --i) {
if (i * i == c) return true;
int d = c - i * i, t = sqrt(d);
if (t * t == d) return true;
}
return false;
}
};
下面这种方法用到了 HashSet,从0遍历到c的平方根,对于每个i*i,都加入 HashSet 中,然后计算 c - i*i,如果这个差值也在 HashSet 中,返回 true,遍历结束返回 false,参见代码如下:
解法二:
class Solution {
public:
bool judgeSquareSum(int c) {
unordered_set<int> s;
for (int i = ; i <= sqrt(c); ++i) {
s.insert(i * i);
if (s.count(c - i * i)) return true;
}
return false;
}
};
上面两种方法都不是很高效,来看下面这种高效的解法。论坛上有人称之为二分解法,但是博主怎么觉得不是呢,虽然样子很像,但是并没有折半的操作啊。这里用a和b代表了左右两个范围,分别为0和c的平方根,然后 while 循环遍历,如果 a*a + b*b 刚好等于c,那么返回 true;如果小于c,则a增大1;反之如果大于c,则b自减1,参见代码如下:
解法三:
class Solution {
public:
bool judgeSquareSum(int c) {
long a = , b = sqrt(c);
while (a <= b) {
if (a * a + b * b == c) return true;
else if (a * a + b * b < c) ++a;
else --b;
}
return false;
}
};
下面这种解法基于费马平方和定理 Fermat's theorem on sums of two squares 的一般推广形式:当某个数字的 4k+3 型的质数因子的个数均为偶数时,其可以拆分为两个平方数之和(each prime that is congruent to 3 mod 4 appears with an even exponent in the prime factorization of the number)。那么我们只要统计其质数因子的个数,并且判读,若其为 4k+3 型且出现次数为奇数的话直接返回 false。这里,我们从2开始遍历,若能整除2,则计数器加1,并且c也要除以2。这样我们找到都会是质数因子,因为非质数因子中的因子已经在之前被除掉了,这也是个 trick,需要自己好好想一下。最终在循环退出后,我们还要再判断一下,若剩余的质数因子还是个 4k+3 型,那么返回 false,否则返回 true,参见代码如下:
解法四:
class Solution {
public:
bool judgeSquareSum(int c) {
for (int i = ; i * i <= c; ++i) {
if (c % i != ) continue;
int cnt = ;
while (c % i == ) {
++cnt;
c /= i;
}
if (i % == && cnt % != ) return false;
}
return c % != ;
}
};
类似题目:
参考资料:
https://leetcode.com/problems/sum-of-square-numbers/
https://leetcode.com/problems/sum-of-square-numbers/discuss/104938/simple-c-solution
https://leetcode.com/problems/sum-of-square-numbers/discuss/104930/java-two-pointers-solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 633. Sum of Square Numbers 平方数之和的更多相关文章
- LeetCode 633. Sum of Square Numbers平方数之和 (C++)
题目: Given a non-negative integer c, your task is to decide whether there're two integers a and b suc ...
- [LeetCode] Sum of Square Numbers 平方数之和
Given a non-negative integer c, your task is to decide whether there're two integers a and b such th ...
- Leetcode633.Sum of Square Numbers平方数之和
给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 + b2 = c. 示例1: 输入: 5 输出: True 解释: 1 * 1 + 2 * 2 = 5 示例2: 输入: 3 ...
- #Leetcode# 633. Sum of Square Numbers
https://leetcode.com/problems/sum-of-square-numbers/ Given a non-negative integer c, your task is to ...
- 【Leetcode_easy】633. Sum of Square Numbers
problem 633. Sum of Square Numbers 题意: solution1: 可以从c的平方根,注意即使c不是平方数,也会返回一个整型数.然后我们判断如果 i*i 等于c,说明c ...
- 【LeetCode】633. Sum of Square Numbers 解题报告(python & Java & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 双指针 列表生成式 循环 日期 题目地址:https ...
- 【leetcode】633. Sum of Square Numbers(two-sum 变形)
Given a non-negative integer c, decide whether there're two integers a and b such that a2 + b2 = c. ...
- 【LeetCode】633. Sum of Square Numbers
Difficulty: Easy More:[目录]LeetCode Java实现 Description https://leetcode.com/problems/sum-of-square-n ...
- 633. Sum of Square Numbers【Easy】【双指针-是否存在两个数的平方和等于给定目标值】
Given a non-negative integer c, your task is to decide whether there're two integers a and bsuch tha ...
随机推荐
- 通过requirements.txt文件创建虚拟环境副本
1.首先在原来的环境中生成一个需求文件requirements.txt,用于记录所有依赖包及其精确的版本号. (venv) $ pip freeze >requirements.txt 2.创建 ...
- LeetCode 142:环形链表 II Linked List Cycle II
给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 pos 是 - ...
- 现代WEB前端的性能优化
现代WEB前端的性能优化 前言:这只是一份学习笔记. 什么是WEB前端 潜在的优化点: DNS是否可以通过缓存减少DNS查询时间? 网络请求的过程走最近的网络环境? 相同的静态资源是否可以缓存? 能否 ...
- 如何在点击 a 标签的 onclick 时间时,不触发 window.onbeforeunload 事件
如题! 直接贴代码了: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http:/ ...
- laravel模型中非静态方法也能静态调用的原理
刚开始用laravel模型时,为了方便一直写静态方法,进行数据库操作. <?php namespace App\Models; use Illuminate\Database\Eloquent\ ...
- .Net中WebService从创建到发布到部署带(IIS)的过程笔记
一.Web Service 1.定义 是可以接收从Internet上的其他系统中传递的请求,是一种轻量级的独立的通讯技术, 能使得运行在不同机器上的不同应用无须借助附加的.专门的第三方软件或硬件, 就 ...
- .net Dapper 学习系列(1) ---Dapper入门
目录 写在前面 为什么选择Dapper 在项目中安装Dapper 在项目中使用Dapper 在项目中使用Dapper 进行单表增删改数据操作 总结 写在前面 Dapper 是一款轻量级ORM架构.为解 ...
- CefSharp F12打开DevTools查看console js和c#方法互相调用
转载地址: https://www.cnblogs.com/lonelyxmas/p/11010018.html winform嵌入chrome浏览器,修改项目属性 生成 平台为x86 1.nuget ...
- 玄学 npm报错记录
刚开始是版本原因npm报错,ok卸载重装就可以了, 后面报错 npm ERR! code ENOGIT npm ERR! No git binary found in $PATH npm ERR! n ...
- vue如何导入外部js文件(es6)
也许大家都是使用习惯了es5的写法喜欢直接用<Script>标签倒入js文件,但是很是可惜,这写法.在es6,或则说vue环境下不支持 真的写法是怎样? 首先.我们要改造我们要映入的外部j ...