memcache原理、内存模型:

http://www.csdn.net/article/2016-03-16/2826609

redis原理:

http://baike.baidu.com/link?url=2Q88GlO3_-JPZE_RhZ6j8UsSZ7WBYSY6J4voqEd7guvcE4oyrEeQfnAdp77tiFILBmGLy1MePFt5Lswdhl3gKa

redis两种持久化方式及原理:

http://zhengdl126.iteye.com/blog/2191834

redis不同数据类型应用场景:

http://www.cnblogs.com/hjwublog/p/5639990.html

关系数据库转redis存储应用Demo:

http://blog.sina.com.cn/s/blog_5a15b7d10101gizu.html

redis主从复制:

http://blog.csdn.net/abc86319253/article/details/42173361

http://blog.sina.com.cn/s/blog_7530db6f0100vegl.html

MemCache超详细解读

摘要:MemCache是一个自由、源码开放、高性能、分布式的分布式内存对象缓存系统,用于动态Web应用以减轻数据库的负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高了网站访问的速度。

MemCache是什么?

MemCache是一个自由、源码开放、高性能、分布式的分布式内存对象缓存系统,用于动态Web应用以减轻数据库的负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高了网站访问的速度。 MemCaChe是一个存储键值对的HashMap,在内存中对任意的数据(比如字符串、对象等)所使用的key-value存储,数据可以来自数据库调用、API调用,或者页面渲染的结果。MemCache设计理念就是小而强大,它简单的设计促进了快速部署、易于开发并解决面对大规模的数据缓存的许多难题,而所开放的API使得MemCache能用于Java、C/C++/C#、Perl、Python、PHP、Ruby等大部分流行的程序语言。

另外,说一下MemCache和MemCached的区别:

1、MemCache是项目的名称

2、MemCached是MemCache服务器端可以执行文件的名称

MemCache的官方网站为 http://memcached.org/

MemCache访问模型

为了加深理解,我模仿着原阿里技术专家李智慧老师《大型网站技术架构 核心原理与案例分析》一书MemCache部分,自己画了一张图:

特别澄清一个问题,MemCache虽然被称为”分布式缓存”,但是MemCache本身完全不具备分布式的功能,MemCache集群之间不会相互通信(与之形成对比的,比如JBoss Cache,某台服务器有缓存数据更新时,会通知集群中其他机器更新缓存或清除缓存数据),所谓的”分布式”,完全依赖于客户端程序的实现,就像上面这张图的流程一样。

同时基于这张图,理一下MemCache一次写缓存的流程:

1、应用程序输入需要写缓存的数据

2、API将Key输入路由算法模块,路由算法根据Key和MemCache集群服务器列表得到一台服务器编号

3、由服务器编号得到MemCache及其的ip地址和端口号

4、API调用通信模块和指定编号的服务器通信,将数据写入该服务器,完成一次分布式缓存的写操作

读缓存和写缓存一样,只要使用相同的路由算法和服务器列表,只要应用程序查询的是相同的Key,MemCache客户端总是访问相同的客户端去读取数据,只要服务器中还缓存着该数据,就能保证缓存命中。

这种MemCache集群的方式也是从分区容错性的方面考虑的,假如Node2宕机了,那么Node2上面存储的数据都不可用了,此时由于集群中Node0和Node1还存在,下一次请求Node2中存储的Key值的时候,肯定是没有命中的,这时先从数据库中拿到要缓存的数据,然后路由算法模块根据Key值在Node0和Node1中选取一个节点,把对应的数据放进去,这样下一次就又可以走缓存了,这种集群的做法很好,但是缺点是成本比较大。

一致性Hash算法

从上面的图中,可以看出一个很重要的问题,就是对服务器集群的管理,路由算法至关重要,就和负载均衡算法一样,路由算法决定着究竟该访问集群中的哪台服务器,先看一个简单的路由算法。

1、余数Hash

比方说,字符串str对应的HashCode是50、服务器的数目是3,取余数得到1,str对应节点Node1,所以路由算法把str路由到Node1服务器上。由于HashCode随机性比较强,所以使用余数Hash路由算法就可以保证缓存数据在整个MemCache服务器集群中有比较均衡的分布。

如果不考虑服务器集群的伸缩性(什么是伸缩性,请参见大型网站架构学习笔记),那么余数Hash算法几乎可以满足绝大多数的缓存路由需求,但是当分布式缓存集群需要扩容的时候,就难办了。

就假设MemCache服务器集群由3台变为4台吧,更改服务器列表,仍然使用余数Hash,50对4的余数是2,对应Node2,但是str原来是存在Node1上的,这就导致了缓存没有命中。如果这么说不够明白,那么不妨举个例子,原来有HashCode为0~19的20个数据,那么:

现在我扩容到4台,加粗标红的表示命中:

如果我扩容到20+的台数,只有前三个HashCode对应的Key是命中的,也就是15%。当然这只是个简单例子,现实情况肯定比这个复杂得多,不过足以说明,使用余数Hash的路由算法,在扩容的时候会造成大量的数据无法正确命中(其实不仅仅是无法命中,那些大量的无法命中的数据还在原缓存中在被移除前占据着内存)。这个结果显然是无法接受的,在网站业务中,大部分的业务数据度操作请求上事实上是通过缓存获取的,只有少量读操作会访问数据库,因此数据库的负载能力是以有缓存为前提而设计的。当大部分被缓存了的数据因为服务器扩容而不能正确读取时,这些数据访问的压力就落在了数据库的身上,这将大大超过数据库的负载能力,严重的可能会导致数据库宕机。

这个问题有解决方案,解决步骤为:

(1)在网站访问量低谷,通常是深夜,技术团队加班,扩容、重启服务器

(2)通过模拟请求的方式逐渐预热缓存,使缓存服务器中的数据重新分布

2、一致性Hash算法

一致性Hash算法通过一个叫做一致性Hash环的数据结构实现Key到缓存服务器的Hash映射,看一下我自己画的一张图:

具体算法过程为:先构造一个长度为232的整数环(这个环被称为一致性Hash环),根据节点名称的Hash值(其分布为[0, 232-1])将缓存服务器节点放置在这个Hash环上,然后根据需要缓存的数据的Key值计算得到其Hash值(其分布也为[0, 232-1]),然后在Hash环上顺时针查找距离这个Key值的Hash值最近的服务器节点,完成Key到服务器的映射查找。

就如同图上所示,三个Node点分别位于Hash环上的三个位置,然后Key值根据其HashCode,在Hash环上有一个固定位置,位置固定下之后,Key就会顺时针去寻找离它最近的一个Node,把数据存储在这个Node的MemCache服务器中。使用Hash环如果加了一个节点会怎么样,看一下:

一个节点会怎么样,看一下:

看到我加了一个Node4节点,只影响到了一个Key值的数据,本来这个Key值应该是在Node1服务器上的,现在要去Node4了。采用一致性Hash算法,的确也会影响到整个集群,但是影响的只是加粗的那一段而已,相比余数Hash算法影响了远超一半的影响率,这种影响要小得多。更重要的是,集群中缓存服务器节点越多,增加节点带来的影响越小,很好理解。换句话说,随着集群规模的增大,继续命中原有缓存数据的概率会越来越大,虽然仍然有小部分数据缓存在服务器中不能被读到,但是这个比例足够小,即使访问数据库,也不会对数据库造成致命的负载压力。

至于具体应用,这个长度为232的一致性Hash环通常使用二叉查找树实现,至于二叉查找树,就是算法的问题了,可以自己去查询相关资料。

MemCache实现原理

首先要说明一点,MemCache的数据存放在内存中,存放在内存中个人认为意味着几点:

1、访问数据的速度比传统的关系型数据库要快,因为Oracle、MySQL这些传统的关系型数据库为了保持数据的持久性,数据存放在硬盘中,IO操作速度慢

2、MemCache的数据存放在内存中同时意味着只要MemCache重启了,数据就会消失

3、既然MemCache的数据存放在内存中,那么势必受到机器位数的限制,这个之前的文章写过很多次了,32位机器最多只能使用2GB的内存空间,64位机器可以认为没有上限

然后我们来看一下MemCache的原理,MemCache最重要的莫不是内存分配的内容了,MemCache采用的内存分配方式是固定空间分配,还是自己画一张图说明:

这张图片里面涉及了slab_class、slab、page、chunk四个概念,它们之间的关系是:

1、MemCache将内存空间分为一组slab

2、每个slab下又有若干个page,每个page默认是1M,如果一个slab占用100M内存的话,那么这个slab下应该有100个page

3、每个page里面包含一组chunk,chunk是真正存放数据的地方,同一个slab里面的chunk的大小是固定的

4、有相同大小chunk的slab被组织在一起,称为slab_class

MemCache内存分配的方式称为allocator,slab的数量是有限的,几个、十几个或者几十个,这个和启动参数的配置相关。

MemCache中的value过来存放的地方是由value的大小决定的,value总是会被存放到与chunk大小最接近的一个slab中,比如slab[1]的chunk大小为80字节、slab[2]的chunk大小为100字节、slab[3]的chunk大小为128字节(相邻slab内的chunk基本以1.25为比例进行增长,MemCache启动时可以用-f指定这个比例),那么过来一个88字节的value,这个value将被放到2号slab中。放slab的时候,首先slab要申请内存,申请内存是以page为单位的,所以在放入第一个数据的时候,无论大小为多少,都会有1M大小的page被分配给该slab。申请到page后,slab会将这个page的内存按chunk的大小进行切分,这样就变成了一个chunk数组,最后从这个chunk数组中选择一个用于存储数据。

如果这个slab中没有chunk可以分配了怎么办,如果MemCache启动没有追加-M(禁止LRU,这种情况下内存不够会报Out Of Memory错误),那么MemCache会把这个slab中最近最少使用的chunk中的数据清理掉,然后放上最新的数据。针对MemCache的内存分配及回收算法,总结三点:

1、MemCache的内存分配chunk里面会有内存浪费,88字节的value分配在128字节(紧接着大的用)的chunk中,就损失了30字节,但是这也避免了管理内存碎片的问题

2、MemCache的LRU算法不是针对全局的,是针对slab的

3、应该可以理解为什么MemCache存放的value大小是限制的,因为一个新数据过来,slab会先以page为单位申请一块内存,申请的内存最多就只有1M,所以value大小自然不能大于1M了

再总结MemCache的特性和限制

上面已经对于MemCache做了一个比较详细的解读,这里再次总结MemCache的限制和特性:

1、MemCache中可以保存的item数据量是没有限制的,只要内存足够

2、MemCache单进程在32位机中最大使用内存为2G,这个之前的文章提了多次了,64位机则没有限制

3、Key最大为250个字节,超过该长度无法存储

4、单个item最大数据是1MB,超过1MB的数据不予存储

5、MemCache服务端是不安全的,比如已知某个MemCache节点,可以直接telnet过去,并通过flush_all让已经存在的键值对立即失效

6、不能够遍历MemCache中所有的item,因为这个操作的速度相对缓慢且会阻塞其他的操作

7、MemCache的高性能源自于两阶段哈希结构:第一阶段在客户端,通过Hash算法根据Key值算出一个节点;第二阶段在服务端,通过一个内部的Hash算法,查找真正的item并返回给客户端。从实现的角度看,MemCache是一个非阻塞的、基于事件的服务器程序

8、MemCache设置添加某一个Key值的时候,传入expiry为0表示这个Key值永久有效,这个Key值也会在30天之后失效,见memcache.c的源代码:

  1. #define REALTIME_MAXDELTA 60*60*24*30
  2. static rel_time_t realtime(const time_t exptime) {
  3. if (exptime == 0) return 0;
  4. if (exptime > REALTIME_MAXDELTA) {
  5. if (exptime <= process_started)
  6. return (rel_time_t)1;
  7. return (rel_time_t)(exptime - process_started);
  8. } else {
  9. return (rel_time_t)(exptime + current_time);
  10. }
  11. }

这个失效的时间是memcache源码里面写的,开发者没有办法改变MemCache的Key值失效时间为30天这个限制

MemCache指令汇总

上面说过,已知MemCache的某个节点,直接telnet过去,就可以使用各种命令操作MemCache了,下面看下MemCache有哪几种命令:

命    令 作    用
get 返回Key对应的Value值
add 添加一个Key值,没有则添加成功并提示STORED,有则失败并提示NOT_STORED
set  无条件地设置一个Key值,没有就增加,有就覆盖,操作成功提示STORED
replace 按照相应的Key值替换数据,如果Key值不存在则会操作失败
stats 返回MemCache通用统计信息(下面有详细解读)
stats items 返回各个slab中item的数目和最老的item的年龄(最后一次访问距离现在的秒数)
stats slabs 返回MemCache运行期间创建的每个slab的信息(下面有详细解读)
version 返回当前MemCache版本号
flush_all 清空所有键值,但不会删除items,所以此时MemCache依旧占用内存
quit 关闭连接

stats指令解读

stats是一个比较重要的指令,用于列出当前MemCache服务器的状态,拿一组数据举个例子:

  1. STAT pid 1023
  2. STAT uptime 21069937
  3. STAT time 1447235954
  4. STAT version 1.4.5
  5. STAT pointer_size 64
  6. STAT rusage_user 1167.020934
  7. STAT rusage_system 3346.933170
  8. STAT curr_connections 29
  9. STAT total_connections 21
  10. STAT connection_structures 49
  11. STAT cmd_get 49
  12. STAT cmd_set 7458
  13. STAT cmd_flush 0
  14. STAT get_hits 7401
  15. STAT get_misses 57
  16. ..(delete、incr、decr、cas的hits和misses数,cas还多一个badval)
  17. STAT auth_cmds 0
  18. STAT auth_errors 0
  19. STAT bytes_read 22026555
  20. STAT bytes_written 8930466
  21. STAT limit_maxbytes 4134304000
  22. STAT accepting_conns 1
  23. STAT listen_disabled_num 0
  24. STAT threads 4
  25. STAT bytes 151255336
  26. STAT current_items 57146
  27. STAT total_items 580656
  28. STAT evicitions 0

这些参数反映着MemCache服务器的基本信息,它们的意思是:

参  数  名 作      用
pid MemCache服务器的进程id
uptime 服务器已经运行的秒数
time 服务器当前的UNIX时间戳
version MemCache版本
pointer_size 当前操作系统指针大小,反映了操作系统的位数,64意味着MemCache服务器是64位的
rusage_user 进程的累计用户时间
rusage_system 进程的累计系统时间
curr_connections  当前打开着的连接数
total_connections  当服务器启动以后曾经打开过的连接数
connection_structures 服务器分配的连接构造数
cmd_get get命令总请求次数
cmd_set set命令总请求次数
cmd_flush flush_all命令总请求次数
get_hits 总命中次数,重要,缓存最重要的参数就是缓存命中率,以get_hits / (get_hits + get_misses)表示,比如这个缓存命中率就是99.2%
get_misses 总未命中次数
auth_cmds 认证命令的处理次数
auth_errors 认证失败的处理次数
bytes_read 总读取的字节数
bytes_written 总发送的字节数
 limit_maxbytes 分配给MemCache的内存大小(单位为字节)
accepting_conns 是否已经达到连接的最大值,1表示达到,0表示未达到
listen_disabled_num 统计当前服务器连接数曾经达到最大连接的次数,这个次数应该为0或者接近于0,如果这个数字不断增长, 就要小心我们的服务了
threads 当前MemCache总线程数,由于MemCache的线程是基于事件驱动机制的,因此不会一个线程对应一个用户请求
bytes 当前服务器存储的items总字节数
current_items 当前服务器存储的items总数量
total_items 自服务器启动以后存储的items总数量

stats slab指令解读

如果对上面的MemCache存储机制比较理解了,那么我们来看一下各个slab中的信息,还是拿一组数据举个例子:

  1. 1 STAT1:chunk_size 96
  2. 2 ...
  3. 3 STAT 2:chunk_size 144
  4. 4 STAT 2:chunks_per_page 7281
  5. 5 STAT 2:total_pages 7
  6. 6 STAT 2:total_chunks 50967
  7. 7 STAT 2:used_chunks 45197
  8. 8 STAT 2:free_chunks 1
  9. 9 STAT 2:free_chunks_end 5769
  10. 10 STAT 2:mem_requested 6084638
  11. 11 STAT 2:get_hits 48084
  12. 12 STAT 2:cmd_set 59588271
  13. 13 STAT 2:delete_hits 0
  14. 14 STAT 2:incr_hits 0
  15. 15 STAT 2:decr_hits 0
  16. 16 STAT 2:cas_hits 0
  17. 17 STAT 2:cas_badval 0
  18. 18 ...
  19. 19 STAT 3:chunk_size 216
  20. 20 ...

首先看到,第二个slab的chunk_size(144)/第一个slab的chunk_size(96)=1.5,第三个slab的chunk_size(216)/第二个slab的chunk_size(144)=1.5,可以确定这个MemCache的增长因子是1.5,chunk_size以1.5倍增长。然后解释下字段的含义:

参  数  名 作      用
chunk_size 当前slab每个chunk的大小,单位为字节
chunks_per_page 每个page可以存放的chunk数目,由于每个page固定为1M即1024*1024字节,所以这个值就是(1024*1024/chunk_size)
total_pages 分配给当前slab的page总数
total_chunks 当前slab最多能够存放的chunk数,这个值是total_pages*chunks_per_page
used_chunks 已经被分配给存储对象的chunks数目
free_chunks 曾经被使用过但是因为过期而被回收的chunk数
free_chunks_end 新分配但还没有被使用的chunk数,这个值不为0则说明当前slab从来没有出现过容量不够的时候
mem_requested 当前slab中被请求用来存储数据的内存空间字节总数,(total_chunks*chunk_size)-mem_requested表示有多少内存在当前slab中是被闲置的,这包括未用的slab+使用的slab中浪费的内存
get_hits 当前slab中命中的get请求数
cmd_set 当前slab中接收的所有set命令请求数
delete_hits 当前slab中命中的delete请求数
incr_hits 当前slab中命中的incr请求数
decr_hits 当前slab中命中的decr请求数
cas_hits 当前slab中命中的cas请求数
cas_badval 当前slab中命中但是更新失败的cas请求数

看到这个命令的输出量很大,所有信息都很有作用。举个例子吧,比如第一个slab中使用的chunks很少,第二个slab中使用的chunks很多,这时就可以考虑适当增大MemCache的增长因子了,让一部分数据落到第一个slab中去,适当平衡两个slab中的内存,避免空间浪费。

MemCache的Java实现实例

讲了这么多,作为一个Java程序员,怎么能不写写MemCache的客户端的实现呢?MemCache的客户端有很多第三方jar包提供了实现,其中比较好的当属XMemCached了,XMemCached具有效率高、IO非阻塞、资源耗费少、支持完整的协议、允许设置节点权重、允许动态增删节点、支持JMX、支持与Spring框架集成、使用连接池、可扩展性好等诸多优点,因而被广泛使用。这里利用XMemCache写一个简单的MemCache客户单实例,也没有验证过,纯属抛砖引玉:

  1. public class MemCacheManager
  2. {
  3. private static MemCacheManager instance = new MemCacheManager();
  4. /** XMemCache允许开发者通过设置节点权重来调节MemCache的负载,设置的权重越高,该MemCache节点存储的数据越多,负载越大 */
  5. private static MemcachedClientBuilder mcb =
  6. new XMemcachedClientBuilder(AddrUtil.getAddresses("127.0.0.1:11211 127.0.0.2:11211 127.0.0.3:11211"), new int[]{1, 3, 5});
  7. private static MemcachedClient mc = null;
  8. /** 初始化加载客户端MemCache信息 */
  9. static
  10. {
  11. mcb.setCommandFactory(new BinaryCommandFactory());
  12. // 使用二进制文件
  13. mcb.setConnectionPoolSize(10);
  14. // 连接池个数,即客户端个数
  15. try
  16. {
  17. mc = mcb.build();
  18. }
  19. catch (IOException e)
  20. {
  21. e.printStackTrace();
  22. }
  23. }
  24. private MemCacheManager()
  25. {
  26. }
  27. public MemCacheManager getInstance()
  28. {
  29. return instance;
  30. }
  31. /** 向MemCache服务器设置数据 */
  32. public void set(String key, int expiry, Object obj) throws Exception
  33. {
  34. mc.set(key, expiry, obj);
  35. }
  36. /** 从MemCache服务器获取数据 */
  37. public Object get(String key) throws Exception
  38. {
  39. return mc.get(key);
  40. }
  41. /**
  42. * MemCache通过compare and set即cas协议实现原子更新,类似乐观锁,每次请求存储某个数据都要附带一个cas值,MemCache
  43. * 比对这个cas值与当前存储数据的cas值是否相等,如果相等就覆盖老数据,如果不相等就认为更新失败,这在并发环境下特别有用
  44. */
  45. public boolean update(String key, Integer i) throws Exception
  46. {
  47. GetsResponse result = mc.gets(key);
  48. long cas = result.getCas();
  49. // 尝试更新key对应的value
  50. if (!mc.cas(key, 0, i, cas))
  51. {
  52. return false;
  53. }
  54. return true;
  55. }
  56. }

(转)memcache、redis缓存的更多相关文章

  1. memcache/redis 缓存学习笔记

    0.redis和memcache的区别 a.redis可以存储除了string之外的对象,如list,hash等 b.服务器宕机以后,redis会把内存的数据持久化到磁盘上,而memcache则不会 ...

  2. ehcache memcache redis -- java中的三大缓存

      三个缓存在java代码中用的是较多的,但是它们都有自己的应用场合,和优缺点.  Ehcache 1.初衷:减少数据库操作的高延时而设计.(缓存的目的,好像都是这个吧) 2.Apache Licen ...

  3. 缓存子系统如何设计(Cachable tag, Memcache/redis support, xml config support, LRU/LFU/本地缓存命中率)

    大家对这段代码肯定很熟悉吧: public List<UserInfo> SearchUsers(string userName) { string cacheKey=string.For ...

  4. 分布式缓存集群方案特性使用场景(Memcache/Redis(Twemproxy/Codis/Redis-cluster))优缺点对比及选型

    分布式缓存集群方案特性使用场景(Memcache/Redis(Twemproxy/Codis/Redis-cluster))优缺点对比及选型   分布式缓存特性: 1) 高性能:当传统数据库面临大规模 ...

  5. 缓存工厂之Redis缓存

    这几天没有按照计划分享技术博文,主要是去医院了,这里一想到在医院经历的种种,我真的有话要说:医院里的医务人员曾经被吹捧为美丽+和蔼+可亲的天使,在经受5天左右相互接触后不得不让感慨:遇见的有些人员在挂 ...

  6. PHP 开发 APP 接口 学习笔记与总结 - Redis 缓存

    Redis 可以定期将数据备份到磁盘中(持久化),同时不仅仅支持简单的key/value 类型的数据,同时还提供list,set,hash等数据结构的存储:Memcache 只是简单的key/valu ...

  7. Redis缓存、MemCached和.Net内部缓存的切换使用

    接口文件:IDataCache.cs using System; using System.Collections.Generic; using System.Linq; using System.T ...

  8. MemCache内存缓存系统

    memcached是一种缓存技术, 他可以把你的数据放入内存,从而通过内存访问提速,因为内存最快的, memcached技术的主要目的提速, 默认情况下占用的端口号为:11211. 在memachec ...

  9. 高可用Redis(十三):Redis缓存的使用和设计

    1.缓存的受益和成本 1.1 受益 1.可以加速读写:Redis是基于内存的数据源,通过缓存加速数据读取速度 2.降低后端负载:后端服务器通过前端缓存降低负载,业务端使用Redis降低后端数据源的负载 ...

  10. ThinkPHP5配置redis缓存

    thinkphp采用cache类提供缓存功能支持,采用驱动方式,在使用缓存之前需要进行初始化操作.支持的缓存类型包括file.memcache.wincache.sqlite.redis和xcache ...

随机推荐

  1. IBATIS+ORACLE(一)

      迁移时间:2017年6月1日15:55:17 Author:Marydon (四)IBATIS + ORACLE 第一部分:基础篇 1.4.1.1 分页SQL <!-- 开头 --> ...

  2. 在Docker里使用(支持镜像继承的)supervisor管理进程(转)

    这篇文章是受 dockboard 之托帮忙翻译的与 docker 有关的技术文章.译自 Using Supervisor with Docker to manage processes (suppor ...

  3. asp 支付宝 企业版 接口 支持网银接口 ,网银直接支付

    asp 支付宝 企业版 接口 支持网银接口 ,网银直接支付 仅仅是多了一个defalutbank的參数. 详细看 open.alipay.com <% ' 类名:AlipaySubmit ' 功 ...

  4. shell脚本对多端口进程kill并重启进程

    #!/bin/bash export LOG_FILE='/data/log/search' spider_search_pid=`ps aux|grep flask_web_search|grep ...

  5. 将项目从tomcat 迁移到JBoss5.0

    http://java-boy.iteye.com/blog/531411从Tomcat升级到JBoss5.1真是一个痛苦的过程,可能遇到很多问题.以下是我碰到的问题,及解决方法. 一.Hiberna ...

  6. oracle聚合函数及行专列,pivot rollup cube

    1.原始数据 --方法-: --以单位分组,计算每类特殊情况的合计以及按照单位的小计数 with a as (SELECT b.szfz, case  when tsqk is not null th ...

  7. Quartz.NET 实现定时任务调度

    Quartz.NET Quick Start Guide Welcome to the Quick Start Guide for Quartz.NET. As you read this guide ...

  8. kali2.0下配置Metasploit+postgresql链接

    工具/原料   kali2.0 方法/步骤     1.postgresql是本身没有启动的.所以需要启动. service postgresql start   2.通过命令进入配置 sudo -u ...

  9. Navicat for MySQL再谈之无奈之下还是去安装Navicat Premium

    不多说,直接上干货! 首先,Navicat for MySQL没有查看数据库属性. 其次,没有这个功能多和强大,在走过一段弯路之后,果断放弃Navicat for MySQL,而使用Navicat P ...

  10. Request介绍及演示样例 PART1

    Request在ServletAPI的规范连接地址http://blog.csdn.net/zghwaicsdn/article/details/51035146 HTTP简介 URL是浏览器寻找信息 ...