http://www.lydsy.com/JudgeOnline/problem.php?id=3538

题意不要理解错QAQ,是说当前边(u,v)且u到n的最短距离中包含这条边,那么这条边就不警告。

那么我们反向spfa两次,然后再正向spfa就行了

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=10006, M=5*N, oo=~0u>>2;
int n, ihead[N], d[3][N], m, q[N], front, tail, vis[N], cnt, tot, P[M], Q[M], U[M], V[M];
struct ED { int to, w, next; }e[M];
void add(int u, int v) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;
} void spfa(int s, int *d) {
for1(i, 1, n) d[i]=oo;
front=tail=0;
vis[s]=1; q[tail++]=s; d[s]=0;
int v;
while(front!=tail) {
int u=q[front++]; if(front==N) front=0; vis[u]=0;
for(int i=ihead[u]; i; i=e[i].next) if(d[v=e[i].to]>d[u]+e[i].w) {
d[v]=d[u]+e[i].w;
if(!vis[v]) {
vis[v]=1;
q[tail++]=v; if(tail==N) tail=0;
}
}
}
} int main() {
read(n); read(m);
for1(i, 1, m) {
int u=getint(), v=getint();
add(v, u);
P[i]=getint(); Q[i]=getint();
U[i]=u; V[i]=v;
}
for1(i, 1, cnt) e[i].w=P[i];
spfa(n, d[0]);
for1(i, 1, cnt) e[i].w=Q[i];
spfa(n, d[1]);
CC(ihead, 0); cnt=0;
for1(i, 1, m) {
int u=U[i], v=V[i];
add(u, v);
e[i].w=2;
if(d[0][u]==d[0][v]+P[i]) --e[i].w;
if(d[1][u]==d[1][v]+Q[i]) --e[i].w;
}
spfa(1, d[2]);
if(d[2][n]==oo) d[2][n]=-1;
print(d[2][n]);
return 0;
}

Description

Farmer John has recently purchased a new car online, but in his haste he accidentally clicked the "Submit" button twice when selecting extra features for the car, and as a result the car ended up equipped with two GPS navigation systems! Even worse, the two systems often make conflicting decisions about the route that FJ should take. The map of the region in which FJ lives consists of N intersections (2 <= N <= 10,000) and M directional roads (1 <= M <= 50,000). Road i connects intersections A_i (1 <= A_i <= N) and B_i (1 <= B_i <= N). Multiple roads could connect the same pair of intersections, and a bi-directional road (one permitting two-way travel) is represented by two separate directional roads in opposite orientations. FJ's house is located at intersection 1, and his farm is located at intersection N. It is possible to reach the farm from his house by traveling along a series of directional roads. Both GPS units are using the same underlying map as described above; however, they have different notions for the travel time along each road. Road i takes P_i units of time to traverse according to the first GPS unit, and Q_i units of time to traverse according to the second unit (each travel time is an integer in the range 1..100,000). FJ wants to travel from his house to the farm. However, each GPS unit complains loudly any time FJ follows a road (say, from intersection X to intersection Y) that the GPS unit believes not to be part of a shortest route from X to the farm (it is even possible that both GPS units can complain, if FJ takes a road that neither unit likes). Please help FJ determine the minimum possible number of total complaints he can receive if he chooses his route appropriately. If both GPS units complain when FJ follows a road, this counts as +2 towards the total.

给你一个N个点的有向图,可能有重边.
有两个GPS定位系统,分别认为经过边i的时间为Pi,和Qi.
每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次T T
两个系统是分开警告的,就是说当走的这条边都不在两个系统认为的最短路范围内,就会受到2次警告.
求一种方案,1àn,最少需要受到多少次警告.

Input

* Line 1: The integers N and M. Line i describes road i with four integers: A_i B_i P_i Q_i.

Output

* Line 1: The minimum total number of complaints FJ can receive if he routes himself from his house to the farm optimally.

Sample Input

5 7
3 4 7 1
1 3 2 20
1 4 17 18
4 5 25 3
1 2 10 1
3 5 4 14
2 4 6 5

INPUT DETAILS: There are 5 intersections and 7 directional roads. The
first road connects from intersection 3 to intersection 4; the first GPS
thinks this road takes 7 units of time to traverse, and the second GPS
thinks it takes 1 unit of time, etc.

Sample Output

1
OUTPUT DETAILS: If FJ follows the path 1 -> 2 -> 4 -> 5, then
the first GPS complains on the 1 -> 2 road (it would prefer the 1
-> 3 road instead). However, for the rest of the route 2 -> 4
-> 5, both GPSs are happy, since this is a shortest route from 2 to 5
according to each GPS.

HINT

Source

【BZOJ】3538: [Usaco2014 Open]Dueling GPS(spfa)的更多相关文章

  1. 【BZOJ】2015: [Usaco2010 Feb]Chocolate Giving(spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2015 这种水题真没啥好说的.. #include <cstdio> #include & ...

  2. 【BZOJ】2019: [Usaco2009 Nov]找工作(spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2019 spfa裸题.....将飞机场的费用变成负,然后spfa找正环就行了 #include < ...

  3. 【BZOJ】3053: The Closest M Points(kdtree)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3053 本来是1a的QAQ.... 没看到有多组数据啊.....斯巴达!!!!!!!!!!!!!!!! ...

  4. 【BZOJ】3668: [Noi2014]起床困难综合症(暴力)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3668 这题很简单.............. 枚举每一位然后累计即可.. QAQ,第一次以为能1A, ...

  5. 【BZOJ】1097: [POI2007]旅游景点atr(spfa+状压dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1097 首先还是我很sb....想到了分层图想不到怎么串起来,,,以为用拓扑序搞转移,,后来感到不行. ...

  6. 【BZOJ】3223: Tyvj 1729 文艺平衡树(splay)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3223 默默的.. #include <cstdio> #include <cstr ...

  7. 【BZOJ】1602: [Usaco2008 Oct]牧场行走(lca)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1602 一开始以为直接暴力最短路,但是n<=1000, q<=1000可能会tle. 显然 ...

  8. 【BZOJ】1601: [Usaco2008 Oct]灌水(kruskal)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1601 很水的题,但是一开始我看成最短路了T_T 果断错. 我们想,要求连通,对,连通!连通的价值最小 ...

  9. 【BZOJ】1600: [Usaco2008 Oct]建造栅栏(dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1600 说好的今天开始刷水.. 本题一开始我以为是排列组合,但是自己弱想不出来,只想到了如果四边有一条 ...

随机推荐

  1. meta文件是什么东西

    meta是用来在HTML文档中模拟HTTP协议的响应头报文.meta 标签用于网页的<head>与</head>中,meta 标签的用处很多.meta 的属性有两种:name和 ...

  2. PHP基础知识(一)

    The Basics Comparison operators Comparison operators are an often overlooked aspect of PHP, which ca ...

  3. 文字溢出显示省略号,兼容ie9以上浏览器

    最近遇上一个问题,文字溢出展示省略号在ie上不管用,经过查找,是少了word-wrap: normal;这个css属性 width:100px; overflow: hidden; white-spa ...

  4. 关于RecyclerView条目复用

    前言 说下前几天遇到的一个小问题,关于RecyclerView条目选中状态的保存.众所周知,RecyclerView被创造出来用于条目的回收利用,但是,当前面回收的条目带有一些特殊的状态(区别于未选中 ...

  5. Can rename table but can not truncate table

    一个表无法truncate可是能够rename,这个乍听起来认为好奇怪,以下模拟该过程. 3个session: session1运行truncate和rename操作. session2运行lock表 ...

  6. C++11: reference_wrapper

    https://oopscenities.net/2012/08/09/reference_wrapper/ Look at this piece of code: 1 2 3 4 5 6 7 8 9 ...

  7. IE浏览器右键菜单分享扩展

    (如果本页面没有自动下载,请点这里下载) IE浏览器分享工具安装步骤:1.发起下载请求后,屏幕上会弹出文件保存对话框,将文件保存到您电脑本地的磁盘中 2.双击刚才下载的安装文件,将JiaThis_Sh ...

  8. 【转载】XGBoost调参

    General Parameters: Guide the overall functioning Booster Parameters: Guide the individual booster ( ...

  9. Linux 基础学习(第一节)

    IP地址的配置 配置临时IP地址 ifconfig etho 192.168.0.91 255.255.255.0 图形化下面配置IP地址: 重启网卡服务: shell环境配置网卡信息 必备的参数 关 ...

  10. SSM整合开发流程

    我的spring是3.2,mybatis是3.4 1 引入user libarary,我的jar文件如下 //spring mvc core springMVC\spring-web-.RELEASE ...