[洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力
题目描述
给出n个数qi,给出Fj的定义如下:
\]
令Ei=Fi/qi,求Ei.
输入输出格式
输入格式:
第一行一个整数n。
接下来n行每行输入一个数,第i行表示qi。
输出格式:
n行,第i行输出Ei。
与标准答案误差不超过1e-2即可。
输入输出样例
输入样例#1:
5
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880
输出样例#1:
-16838672.693
3439.793
7509018.566
4595686.886
10903040.872
说明
对于30%的数据,n≤1000。
对于50%的数据,n≤60000。
对于100%的数据,n≤100000,0<qi<1000000000。
[spj 0.01]
题解:
首先考虑化式子(话说这玩意求的好像是电场强度诶).
\]
\]
不妨设\(b_i=\frac{1}{i^2}\),则有$$E_j=\sum_{i=0}{n-1}q_i*b_{j-i}-\sum_{i=j+1}{n-1}q_i*b_{i-j}$$
前面一半两个符号相乘的下标之和是一个常数,也就是如果将\(q,b\)看成多项式的话,那么这个乘积就可以做卷积.因为若\((a_0+a_1*x+a_2*x^2+...+a_{n-1}*x^{n-1})*(b_0+b_1*x+b_2*x^2+...+b_{n-1}*x^{n-1})=c_0+c_1*x+c_2*x^2+...+c^{2n-1}*x^{2n-1}\),则有\(c_k=\sum^k_{i=0}a_i*b_{k-i}\)也就是这样相乘可以使某一项的次数相同.
那么为了将后面的式子也转化成卷积的形式,我们可以将后面的\(q\)数组翻转一下,用\(q^{'}(q^{'}_i=q_{n-1-i})\)来代替,则有:$$E_j=\sum_{i=0}{n-1}q_i*b_{j-i}-\sum{n-1}{i=j+1}q^{'}{n-i-1}*b_{i-j}$$
那么后面那一半也变成了卷积的形式,就可以直接FFT求了.如果将\(b\)数组乘入\(q\)数组,那么最后的\(E_i\)对应着\(q_i-q^{'}_{n-i-1}\).
#include<bits/stdc++.h>
using namespace std;
const int N = 2e6+5;
const double eps = 1e-4;
const double pi = acos(-1.0);
typedef complex <double> comp;
int n, m, len = 0, r[N];
comp q1[N], q2[N], b1[N], b2[N];
void FFT(comp *A, int f){
for(int i = 0; i < m; i++) if(i < r[i]) swap(A[i], A[r[i]]);
for(int i = 1; i < m; i <<= 1){
for(int j = 0; j < m; j += (i<<1)){
comp wi(cos(pi/i), sin(f*pi/i)), x, y, w(1, 0);
for(int k = 0; k < i; k++, w *= wi){
x = A[j+k], y = w*A[i+j+k];
A[j+k] = x+y, A[i+j+k] = x-y;
}
}
}
if(f == -1) for(int i = 0; i < m; i++) A[i] /= m;
}
int main(){
ios::sync_with_stdio(false);
double x; cin >> n;
for(int i = 0; i < n; i++) cin >> x, q2[n-i-1] = q1[i] = x;
for(int i = 1; i <= n; i++) b1[i] = b2[i] = (double)(1.0/i/i);
for(m = 1; m <= n*2; m <<= 1) len++;
for(int i = 0; i < m; i++) r[i] = (r[i>>1]>>1) | ((i&1)<<(len-1));
cerr << endl;
FFT(q1, 1), FFT(b1, 1), FFT(q2, 1), FFT(b2, 1);
for(int i = 0; i < m; i++) q1[i] *= b1[i], q2[i] *= b2[i];
FFT(q1, -1), FFT(q2, -1);
for(int i = 0; i < n; i++) printf("%.3lf\n", q1[i].real()-q2[n-i-1].real());
return 0;
}
[洛谷P3338] [ZJOI2014]力的更多相关文章
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...
- 洛谷 P3338 [ZJOI2014]力
题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i> ...
- [bzoj3527] [洛谷P3338] [Zjoi2014]力
Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...
- 洛咕 P3338 [ZJOI2014]力
好久没写过博客了.. 大力推式子就行了: \(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\) 那么要转化 ...
- 【洛谷P3338】力
题目大意:求 \[ E_{j}=\sum_{i<j} \frac{q_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i}}{(i-j)^{2}} \] 题解:可以 ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- 【洛谷 P3338】 [ZJOI2014]力(FFT)
题目链接 \[\Huge{E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(i-j)^2}}\] 设\(A[i]= ...
随机推荐
- “Hello World!”团队召开的第十二次会议
今天是我们团队“Hello World!”团队召开的第十二次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 一.会议时间 2 ...
- Java 变量和输入输出
一些重要知识 一个源文件里只能有一个public类,其它类数量不限.文件名与public类名相同 JAVA程序严格区分大小写 JAVA应用程序的执行入口是main方法固定写法:public stati ...
- week1 技术随笔
类别c 内容c 开始时间s 结束时间e 被打断时间I 总计(min) 9.5 随笔 构建之法福后感 22:00 24:00 7 113 9.6 分析 需求分析 9:00 9:30 2 28 编码 词频 ...
- djano modles values+ajax实现无页面刷新更新数据
做项目的过程中想通过不刷新页面的方式来进行页面数据刷新,开始使用http://www.cnblogs.com/ianduin/p/7761400.html方式将查询结果数据进行序列化.发现可以行,但是 ...
- C#部分语法总结
1. Frst和FirstOrDefault 1. Fist 如果查询的数据不存在, 则抛System.InvalidOperationException异常 2. FirstOrdefault 如果 ...
- MySQL中的条件语句
判断学生表中成绩是否小于60,将小于60的学生成绩列为不及格 学生表(student) 字段:姓名(name),学号(主键)(num),性别(sex),成绩(score) select *,if(sc ...
- DELPHI BOOKMARK使用
关于书签(BookMark)操作: 书签操作主要用于在表中快速地定位记录指针,在应用程序中常常要保存记录指针所在的位置,在进行其他处理之后,希望能快速地返回到先前指针所在的位置,此时,使用 ...
- linux 环境变量配置(node)
控制台 env 查看当前的环境变量配置 修改/etc/profile文件,在末尾添加以下内容 export NODE_HOME=/usr/local/node //Node所在路径 export PA ...
- 【bzoj3132】上帝造题的七分钟 二维树状数组区间修改区间查询
题目描述 “第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的操作. ...
- 【bzoj4921】[Lydsy六月月赛]互质序列 暴力
题目描述 给出一个序列,要求删除一段非空区间,使得剩下的数的个数大于等于2.求所有删除方式剩下的数的最大公约数的和. 输入 第一行包含一个正整数n(3<=n<=100000),表示序列的长 ...