1.resnet的skip connection是通过eltwise相加的

2.resnet做detection的时候是在conv4_x的最后一层(也就是stage4的最后一层),因为这个地方stride为16

作者:灰灰
链接:https://www.zhihu.com/question/64494691/answer/271335912
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

炸问题已经很大程度上被normalized initialization and intermediate normalization layers解决了;

另一方面: 由于直接增加网络深度的(plain)网络在训练集上会有更高的错误率,所以更深的网络并没有过拟合,也就是说更深的网络效果不好,是因为网络没有被训练好,至于为啥没有被训练好,个人很赞同前面王峰的答案中的解释。

在ResNet中,building block:

 

H(x)是期望拟合的特征图,这里叫做desired underlying mapping

一个building block要拟合的就是这个潜在的特征图

当没有使用残差网络结构时,building block的映射F(x)需要做的就是拟合H(x)

当使用了残差网络时,就是加入了skip connection 结构,这时候由一个building block 的任务由: F(x) := H(x),变成了F(x) := H(x)-x

对比这两个待拟合的函数,文中说假设拟合残差图更容易优化,也就是说:F(x) := H(x)-x比F(x) := H(x)更容易优化,接下来举了一个例子,极端情况下:desired underlying mapping要拟合的是identity mapping,这时候残差网络的任务就是拟合F(x): 0,而原本的plain结构的话就是F(x) : x,而F(x): 0任务会更容易,原因是:resnet(残差网络)的F(x)究竟长什么样子?中theone的答案:

F是求和前网络映射,H是从输入到求和后的网络映射。比如把5映射到5.1,那么引入残差前是F'(5)=5.1,引入残差后是H(5)=5.1, H(5)=F(5)+5, F(5)=0.1。这里的F'和F都表示网络参数映射,引入残差后的映射对输出的变化更敏感。比如s输出从5.1变到5.2,映射F'的输出增加了1/51=2%,而对于残差结构输出从5.1到5.2,映射F是从0.1到0.2,增加了100%。明显后者输出变化对权重的调整作用更大,所以效果更好。残差的思想都是去掉相同的主体部分,从而突出微小的变化,看到残差网络我第一反应就是差分放大器

后续的实验也是证明了假设的, 残差网络比plain网络更好训练。因此,ResNet解决的是更好地训练网络的问题,王峰的答案算是对ResNet之所以好的一个理论论证吧.

 
https://www.zhihu.com/question/64494691
 
 
用concat代替了eltwise,这样最前面层也可以作用于后面层

第一个公式是ResNet的。这里的l表示层,xl表示l层的输出,Hl表示一个非线性变换。所以对于ResNet而言,l层的输出是l-1层的输出加上对l-1层输出的非线性变换。

第二个公式是DenseNet的。[x0,x1,…,xl-1]表示将0到l-1层的输出feature map做concatenation。concatenation是做通道的合并,就像Inception那样。而前面resnet是做值的相加,通道数是不变的。Hl包括BN,ReLU和3*3的卷积。

DenseNet的一个优点是网络更窄,参数更少,很大一部分原因得益于这种dense block的设计,后面有提到在dense block中每个卷积层的输出feature map的数量都很小(小于100),而不是像其他网络一样动不动就几百上千的宽度。同时这种连接方式使得特征和梯度的传递更加有效,网络也就更加容易训练。原文的一句话非常喜欢:Each layer has direct access to the gradients from the loss function and the original input signal, leading to an implicit deep supervision.直接解释了为什么这个网络的效果会很好。前面提到过梯度消失问题在网络深度越深的时候越容易出现,原因就是输入信息和梯度信息在很多层之间传递导致的,而现在这种dense connection相当于每一层都直接连接input和loss,因此就可以减轻梯度消失现象,这样更深网络不是问题

https://blog.csdn.net/u014380165/article/details/75142664/

问题:densenet什么时候效果比resnet好?

https://blog.csdn.net/gbyy42299/article/details/80434388

resnet densenet的更多相关文章

  1. CNN Architectures(AlexNet,VGG,GoogleNet,ResNet,DenseNet)

    AlexNet (2012) The network had a very similar architecture as LeNet by Yann LeCun et al but was deep ...

  2. CNN网络架构演进:从LeNet到DenseNet

    卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀.CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF ...

  3. densenet tensorflow 中文汉字手写识别

    densenet 中文汉字手写识别,代码如下: import tensorflow as tf import os import random import math import tensorflo ...

  4. Deep Learning 33:读论文“Densely Connected Convolutional Networks”-------DenseNet 简单理解

    一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么 ...

  5. 深度学习—从LeNet到DenseNet

    CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF Net到VGG,GoogLeNet再到ResNet和最近的DenseNet,网络越来越深, ...

  6. 论文笔记-Squeeze-and-Excitation Networks

    作者提出为了增强网络的表达能力,现有的工作显示了加强空间编码的作用.在这篇论文里面,作者重点关注channel上的信息,提出了"Squeeze-and-Excitation"(SE ...

  7. 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)

    转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...

  8. Tensorflow 之finetune微调模型方法&&不同层上设置不同的学习率

    在不同层上设置不同的学习率,fine-tuning https://github.com/dgurkaynak/tensorflow-cnn-finetune ConvNets: AlexNet VG ...

  9. 机器学习技术点----apachecn的github地址

    预处理 离散化 等值分箱 等量分箱 独热 one-hot 标准化 最小最大 min-max z-score l2 标准化 归一化 特征选择 ANOVA 信息增益/信息增益率 模型验证 评价指标 回归 ...

随机推荐

  1. ubuntu下部署django

    一:保证python运行环境安装 apt-get install python 如果需要进行开发则还要安装python-dev apt-get install python-dev 二:安装djang ...

  2. Error:All flavors must now belong to a named flavor dimension.

    环境 android studio 3.0 错误 Error:All flavors must now belong to a named flavor dimension. 解决 在build.gr ...

  3. Java---工欲善其事必先利其器(准备篇)

    Java API 1.7链接:http://pan.baidu.com/s/1cKUaKY 密码:116m Eclispse链接:http://pan.baidu.com/s/1mh6MoL6 密码: ...

  4. CSS3之 :nth-child(n)语法讲解

    语法: E:nth-child(n){ sRules } * 匹配父元素索引为n的子元素E :nth-child(n) 让你匹配到父元素的任一子元素: Figure 1:<section id= ...

  5. 二、redis的配置

    # redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位, # 通常的格式就是 1k 5gb 4m 等酱紫: # # 1k => 1000 bytes # 1kb ...

  6. Jvm运行时内存解析

    一.jvm的概念 在了解jvm的概念之前,我们先来了解java平台的逻辑结构,图片来自<深入java虚拟机> 从图中我们可以看到jdk包含了jre,java语言和java开发工具和Api, ...

  7. PAT 1048. Find Coins

    two sum题目,算是贪婪吧 #include <cstdio> #include <cstdlib> #include <vector> #include &l ...

  8. LeetCode Palidrome Number

    class Solution { public: bool isPalindrome(int x) { ) return false; ; int t = x; ; ) { pow *= ; cnt+ ...

  9. 通过mysql自动同步redis

    在服务端开发过程中,一般会使用MySQL等关系型数据库作为最终的存储引擎,Redis其实也可以作为一种键值对型的数据库,但在一些实际场景中,特别是关系型结构并不适合使用Redis直接作为数据库.这俩家 ...

  10. My SQL查询语言

    基础查询 一.语法select 查询列表from 表名;二.特点1.查询列表可以是字段.常量.表达式.函数,也可以是多个2.查询结果是一个虚拟表 三.示例1.查询单个字段select 字段名 from ...