数学:拓展BSGS
当C不是素数的时候,之前介绍的BSGS就行不通了,需要用到拓展BSGS算法
方法转自https://blog.csdn.net/zzkksunboy/article/details/73162229
典型例题是POJ3243
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
struct Hashmap
{
static const int Ha=,maxe=;
int E,lnk[Ha],son[maxe+],nxt[maxe+],w[maxe+];
int top,stk[maxe+];
void clear() {E=;while (top) lnk[stk[top--]]=;}
void Add(int x,int y) {son[++E]=y;nxt[E]=lnk[x];w[E]=0X7fffffff;lnk[x]=E;}
bool count(int y)
{
int x=y%Ha;
for (int j=lnk[x];j;j=nxt[j])
if (y==son[j]) return true;
return false;
}
int& operator [] (int y)
{
int x=y%Ha;
for (int j=lnk[x];j;j=nxt[j])
if (y==son[j]) return w[j];
Add(x,y);stk[++top]=x;return w[E];
}
}f;
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int exgcd(int a,int b,int &x,int &y)
{
if(b==) {x=;y=;return a;}
int r=exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*y;
return r;
}
int exBSGS(int A,int B,int C)
{
if(C==) if(B==) return A!=; else return -;
if(B==) if(A!=) return ; else return -;
if(A%C==) if(B==) return ; else return -;
int r,D=,num=;
while((r=gcd(A,C))>)
{
if(B%r) return -;
num++;
B/=r;C/=r;D=((long long)D*A/r)%C;
}
for(int i=,tmp=;i<num;i++,tmp=((long long)tmp*A)%C)
if(tmp==B) return i;
int m=ceil(sqrt(C)),Base=;f.clear();
for(int i=;i<=m-;i++)
{
f[Base]=min(f[Base],i);
Base=((long long)Base*A)%C;
}
for(int i=;i<=m-;i++)
{
int x,y,r=exgcd(D,C,x,y);
x=((long long)x*B%C+C)%C;
if(f.count(x)) return i*m+f[x]+num;
D=((long long)D*Base)%C;
}
return -;
}
int main()
{
int A,B,C;
while(scanf("%d%d%d",&A,&C,&B)==)
{
if(!A&&!B&&!C) break;
int ans=exBSGS(A,B,C);
if(ans==-) printf("No Solution\n");
else printf("%d\n",ans);
}
return ;
}
给哈希好评,哪天好好整理一下
数学:拓展BSGS的更多相关文章
- 【POJ 3243】Clever Y 拓展BSGS
调了一周,我真制杖,,, 各种初始化没有设为1,,,我当时到底在想什么??? 拓展BSGS,这是zky学长讲课的课件截屏: 是不是简单易懂.PS:聪哥说“拓展BSGS是偏题,省选不会考,信我没错”,那 ...
- 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)
什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...
- [拓展Bsgs] Clever - Y
题目链接 Clever - Y 题意 有同余方程 \(X^Y \equiv K\ (mod\ Z)\),给定\(X\),\(Z\),\(K\),求\(Y\). 解法 如题,是拓展 \(Bsgs\) 板 ...
- 【SPOJ】Power Modulo Inverted(拓展BSGS)
[SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #inc ...
- 数学:BSGS
先来稍微回顾一下,我们已经会求模线性方程(包括其特殊情况乘法逆元) 我们还会进行幂取模的快速算法(模是质数用费马小定理,模一般情况用欧拉定理) 对于幂中指数特别大的情况,我们还延伸出了拓展欧拉定理来解 ...
- bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...
- 【POJ3243】拓展BSGS(附hash版)
上一篇博文中说道了baby step giant step的方法(简称BSGS),不过对于XY mod Z = K ,若x和z并不互质,则不能直接套用BSGS的方法了. 为什么?因为这时候不存在逆元了 ...
- 【POJ3243】【拓展BSGS】Clever Y
Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...
- 【HDU2815】【拓展BSGS】Mod Tree
Problem Description The picture indicates a tree, every node has 2 children. The depth of the nod ...
随机推荐
- HADOOP (十一).安装hbase
下载安装包并解压设置hbase环境变量配置hbase-site.xml启动hbase检测hbase启动情况测试hbase shell 下载安装包并解压 https://mirrors.tuna.tsi ...
- 找bug——加分作业
bug1:while循环中的*des++ =*src++; 不能这么写吧... bug2:maxSize没有定义 暂时看到这么多
- 自定义View 和 ViewGroup
一. 自定义View介绍 自定义View时, 继承View基类, 并实现其中的一些方法. (1) ~ (2) 方法与构造相关 (3) ~ (5) 方法与组件大小位置相关 (6) ~ (9) 方法与触摸 ...
- P4语法(2) Parser
这里参考学习了: P4语言规范 P4台湾社群 Parser 关于parser 在P4程序中,有着大量的首部(header)和首部实例,但每次只有部分首部实例会对数据包进行操作,而parser会用于生成 ...
- iOS关于setContentOffset的一些细节问题
在UIScrollView,setContentOffset方法的功能是跳转到你指定内容的坐标, setContentOffset有两种方法:setContentOffset:和setContentO ...
- vuex管理页面标题
1.在store -> mutation-types.js文件新增常量 export const UPDATE_TITLE = 'UPDATE_TITLE' 2.新增文件title.js目录结构 ...
- 字符串数组去重 ["a","b","c","a","b","c"] --> ["a","b","c"]
非正则实现: let str_arr=["a","b","c","a","b","c&qu ...
- 编译android6.0错误recipe for target 'out/host/linux-x86/obj/lib/libart.so' failed
转自:http://blog.csdn.net/ztguang/article/details/52856076 trip: libpagemap_32 (out/target/product/xx/ ...
- 基于c++和opencv底层的图像旋转
图像旋转:本质上是对旋转后的图片中的每个像素计算在原图的位置. 在opencv包里有自带的旋转函数,当你知道倾斜角度theta时: 用getRotationMatrix2D可得2X3的旋转变换矩阵 M ...
- 初入py
1.下载工具sublime 我的网盘下载地址:https://pan.baidu.com/s/18-U1ZSg_zHoSAqUuvXj_PQ 直接解压即可 2.配置py27 在新建的文件里面编辑并保存 ...