LightOj 1221 - Travel Company(spfa判负环)
1221 - Travel Company
| Time Limit: 2 second(s) | Memory Limit: 32 MB |
A travel company is planning to launch their bus service in a new route. So they conducted a survey and made a list of all possible roads connecting different cities. Each of the roads has a certain amount of income based on current fare. But at the same
time, each road has some expenses too (this includes fuel and maintenance cost, staff payments, taxes and tribute to labor union which is recently approved by the Government). The travel company is looking for a cyclic route. That is, the bus will start from
any city, then visit one or more cities each exactly once and return to the starting city. The company is also concerned with the profit on the route. In fact the directors of the company have a strict requirement of a profit ratio strictly greater than P.
Otherwise they will not launch the service. A profit ratio for a route is the ratio between the total incomes to the total expenses for that route.
One of your friends works in that company and he asks for a little help from you. All you have to do is to determine if there exists such route, so that the company has a profit ratio of P.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a blank line and three integers N, R, P (2 ≤ N ≤ 100, 0 ≤ R ≤ 9900, 1 ≤ P ≤ 100). N, R and Prepresents number of cities, number of road links and the expected profit
ratio respectively. Then R lines follow. Each line contains four integers Ai, Bi, Ii, Ei (0 ≤ Ai, Bi < N, 0 ≤ Ii ≤ 5000, 1 ≤ Ei ≤ 5000). (Ai,
Bi) represents directed road link from city Ai to Bi. Ii and Ei are the incomes and expenses of the road link respectively.
You may assume that (Ai, Bi) ≠ (Aj, Bj), if i ≠ j and Ai ≠ Bi for any i.
Output
For each case, print the case number and "YES" if there is a cyclic route for which the profit ratio is greater than P or "NO", if there is no such route.
Sample Input |
Output for Sample Input |
|
3 5 8 3 0 1 17 8 1 0 10 5 1 2 11 5 1 4 5 3 2 3 13 7 3 1 9 4 4 3 11 1 3 0 11 6 5 8 3 0 1 17 8 1 0 10 5 1 2 11 5 1 4 5 3 2 3 13 7 3 1 9 4 4 3 11 2 3 0 11 6 5 8 2 0 1 17 8 1 0 10 5 1 2 11 5 1 4 5 3 2 3 13 7 3 1 9 4 4 3 11 5 3 0 11 6 |
Case 1: YES Case 2: NO Case 3: YES |
p*out[k]-in[k]<0 即在图中存在负环。证明完成。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cctype>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <list>
using namespace std;
const int maxn=50100;
const int INF=0x3f3f3f3f;
int n,m,dis[maxn],vis[maxn],intime[maxn];
vector < pair<int,int> > eg[maxn];
int spfa(int src)
{
queue <int> Q;
memset(dis,INF,sizeof(dis));
memset(vis,0,sizeof(vis));
memset(intime,0,sizeof(intime));
dis[src]=0;
Q.push(src);
while(!Q.empty())
{
int u=Q.front();Q.pop();
vis[u]=0;intime[u]++;
if(intime[u]>n)
return 1;
int len=eg[u].size();
for(int i=0;i<len;i++)
{
int v=eg[u][i].first;
int w=eg[u][i].second;
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(!vis[v])
{
vis[v]=1;
Q.push(v);
}
}
}
}
return 0;
}
int main()
{
int T,p,cas=1;
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&m,&p);
for(int i=0;i<=n;i++)
eg[i].clear();
while(m--)
{
int u,v,in,out;
scanf("%d%d%d%d",&u,&v,&in,&out);
int tem=out*p-in;
eg[u].push_back(make_pair(v,tem));
}
printf("Case %d: ",cas++);
int flag=1;
for(int i=0;i<n;i++)
{
if(spfa(i))
{
flag=0;
printf("YES\n");
break;
}
}
if(flag)
printf("NO\n");
}
return 0;
}
LightOj 1221 - Travel Company(spfa判负环)的更多相关文章
- Poj 3259 Wormholes(spfa判负环)
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 42366 Accepted: 15560 传送门 Descr ...
- POJ 3259 Wormholes(SPFA判负环)
题目链接:http://poj.org/problem?id=3259 题目大意是给你n个点,m条双向边,w条负权单向边.问你是否有负环(虫洞). 这个就是spfa判负环的模版题,中间的cnt数组就是 ...
- LightOJ 1074 Extended Traffic SPFA 消负环
分析:一看就是求最短路,然后用dij,果断错了一发,发现是3次方,有可能会出现负环 然后用spfa判负环,然后标记负环所有可达的点,被标记的点答案都是“?” #include<cstdio> ...
- spfa判负环
bfs版spfa void spfa(){ queue<int> q; ;i<=n;i++) dis[i]=inf; q.push();dis[]=;vis[]=; while(!q ...
- poj 1364 King(线性差分约束+超级源点+spfa判负环)
King Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14791 Accepted: 5226 Description ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划
BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划 更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant%28zh_ ...
- [P1768]天路(分数规划+SPFA判负环)
题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...
- poj 2049(二分+spfa判负环)
poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ...
随机推荐
- 【我要学python】MethodType和isinstance和Type函数
一.首先来看isinstance: a=6 isinstance(a,int) #返回Ture isinstance(a,str) #返回False isinstance (a,(str,int,li ...
- 在CentOS6或RHEL6恢复上ext4文件系统误删除的文件
首先说明: [root@CentOS6 ~]# rm -rf / //这条命令不可以执行 [root@CentOS6 ~]# rm -rf /* //这条命令可以执行,别去试 ext4文件系统上误删除 ...
- Python开发基础-Day1-python入门
编程语言分类 机器语言 使用二进制代码直接编程,直接与硬件交互,执行速度非常快,灵活,但是开发难度高,开发效率低下,缺乏移植性. 汇编语言 对机器语言指令进行了英文封装,较机器语言容易记忆,直接与硬件 ...
- android 线程间通信
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha 1,共享内存 变量 2,文件,数据库 3,处理器 消息机制 4, 线程 的 等待,通知 ...
- luogu P1396 营救
题目描述 “咚咚咚……”“查水表!”原来是查水表来了,现在哪里找这么热心上门的查表员啊!小明感动的热泪盈眶,开起了门…… 妈妈下班回家,街坊邻居说小明被一群陌生人强行押上了警车!妈妈丰富的经验告诉她小 ...
- [POJ3581]Sequence
[POJ3581]Sequence 题目大意: 给定序列\(A_{1\sim n}\),其中\(A_1\)为最大的数.要把这个序列分成\(3\)个非空段,并将每一段分别反转,求能得到的字典序最小的序列 ...
- [bzoj1011](HNOI2008)遥远的行星(近似运算)
Description 直 线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...
- [转]spring property标签中的 ref属性和ref 标签有什么不同
spring property标签中的 ref属性和ref 标签有什么不同? 如下:<property name="a" ref="b" /> sp ...
- Maven命名规范收集
一.基本命名规范: groupId:定义当前Maven项目隶属的实际项目,例如org.sonatype.nexus,此id前半部分org.sonatype代表此项目隶属的组织或公司,后部分代表项目的名 ...
- 一次完整的HTTP请求的大致过程(转)
说明:这些理论基本都来自网上,所以不一定准确,但一定是比较好理解的,如果要刨根问底,最好的方式就是看书,且要看权威的书. 一次完整的HTTP请求所经历的7个步骤 HTTP通信机制是在一次完整的HTTP ...
