写着玩玩……

反正超级sb题。

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
ll c[][],h[],f[][];
int n,m,k;
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int main(){
int T=read();k=read();c[][]=;
for(int i=;i<=;i++){
c[i][]=;
for(int j=;j<=i;j++){
c[i][j]=(c[i-][j]+c[i-][j-])%k;
if(!c[i][j])h[i]++;
f[i][j]=f[i-][j]+h[i];
if(i==j)f[i][j]=f[i-][j-]+h[i];
}
}
while(T--){
n=read();m=read();
if(m>n)m=n;
printf("%lld\n",f[n][m]);
}
}

【NOIP2016】组合数问题的更多相关文章

  1. [noip2016]组合数问题<dp+杨辉三角>

    题目链接:https://vijos.org/p/2006 当时在考场上只想到了暴力的做法,现在自己看了以后还是没思路,最后看大佬说的杨辉三角才懂这题... 我自己总结了一下,我不能反应出杨辉三角的递 ...

  2. POJ 1163 The Triangle【dp+杨辉三角加强版(递归)】

    The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 49955   Accepted: 30177 De ...

  3. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  4. 2014多校第六场 1007 || HDU 4927 Series 1(杨辉三角组合数)

    题目链接 题意 : n个数,每操作一次就变成n-1个数,最后变成一个数,输出这个数,操作是指后一个数减前一个数得到的数写下来. 思路 : 找出几个数,算得时候先不要算出来,用式子代替,例如: 1 2 ...

  5. hdu5698瞬间移动-(杨辉三角+组合数+乘法逆元)

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  6. 【考试记录】4.8 Table ( 数论数学 --组合数 & 杨辉三角)

    陆陆续续的开始考很多的试,也会更新这些题目记录下来,免得做完了之后毫无印象,就这么水过去了(以前的考试都是如此,哎……) Table (T1) : 样例: 出于对数学题本能的恐惧考场上放弃了此题专攻T ...

  7. java实现组合数_n!_杨辉三角_组合数递推公式_回文数_汉诺塔问题

    一,使用计算机计算组合数 1,设计思想 (1)使用组合数公式利用n!来计算Cn^k=n!/k!(n-k)!用递推计算阶乘 (2)使用递推的方法用杨辉三角计算Cn+1^k=Cn^k-1+Cn^k 通过数 ...

  8. POJ2167Irrelevant Elements[唯一分解定理 组合数 杨辉三角]

    Irrelevant Elements Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2407   Accepted: 59 ...

  9. hdu 5698(杨辉三角的性质+逆元)

    ---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...

  10. 51nod 1119【杨辉三角】

    思路: = =杨辉三角的应用,组合数的应用: C(N+M,N); 逆元一发,费马小定理,OK. #include <stdio.h> #include <string.h> # ...

随机推荐

  1. 【bzoj4580】[Usaco2016 Open]248 区间dp

    题目描述 Bessie likes downloading games to play on her cell phone, even though she does find the small t ...

  2. C# Socket服务端与客户端通信(包含大文件的断点传输)

    步骤: 一.服务端的建立 1.服务端的项目建立以及页面布局 2.各功能按键的事件代码 1)传输类型说明以及全局变量 2)Socket通信服务端具体步骤:   (1)建立一个Socket   (2)接收 ...

  3. 卡特兰数(Catalan Number) 学习笔记

    一.三个简单的问题 1.给定一串长为2n的01序列,其中0和1的数量相等,满足任意前缀中0的个数不少于1的个数,求序列的个数 2.给出一串长为n的序列,按顺序将他们进栈,随意出栈,求最后进出栈的方案 ...

  4. 从零开始学Linux系统(二)之基本操作指令

    ifconfigping ip地址帮助:ping -t ip地址ping -c 次数 ip地址ping -s 包的大小关机重启:shutdown -h now reboot清屏:clear  == C ...

  5. Numpy模块(数值计算)

    Numpy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. NumPy的主要功能: ndarray,一个多维数组结构,高效且节省空间 无需循环对整组数据进行快速运算的数学函数 ...

  6. 使用JavaScript OOP特性搭建Web应用

    最近,我面试了一个有五年 Web 应用程序开发经验的软件开发人员.四年半来她一直在从事 JavaScript 相关的工作,她自认为 JavaScript 技能非常好,但在不久之后我就发现实际上她对 J ...

  7. ioctl函数用法小记

    By francis_hao    Aug 27,2017   UNPV1对ioctl有算是比较详细的介绍,但是,这些request和后面的数据类型是从哪里来的,以及参数具体该如何使用呢?本文尝试在不 ...

  8. ZooKeeper管理员指南——部署与管理ZooKeeper

    1.部署 本章节主要讲述如何部署ZooKeeper,包括以下三部分的内容: 系统环境 集群模式的配置 单机模式的配置 系统环境和集群模式配置这两节内容大体讲述了如何部署一个能够用于生产环境的ZK集群. ...

  9. [LeetCode] string整体做hash key,窗口思想复杂度O(n)。附来自LeetCode的4例题(标题有字数限制,写不下所有例题题目 T.T)

    引言 在字符串类型的题目中,常常在解题的时候涉及到大量的字符串的两两比较,比如要统计某一个字符串出现的次数.如果每次比较都通过挨个字符比较的方式,那么毫无疑问是非常占用时间的,因此在一些情况下,我们可 ...

  10. 动态规划小结 - 一维动态规划 - 时间复杂度 O(n),题 [LeetCode] Jump Game,Decode Ways

    引言 一维动态规划根据转移方程,复杂度一般有两种情况. func(i) 只和 func(i-1)有关,时间复杂度是O(n),这种情况下空间复杂度往往可以优化为O(1) func(i) 和 func(1 ...