求阶的方法:

根据性质2,直接对ϕ(m)求出因子即可,从小到大依次判断是不是符合ad = 1(mod m)(d是ϕ(m)的因子)

求最小的原根的方法:

根据性质8,对ϕ(m)求出素因子,从1开始不断测试即可,因为最小的原根很容易暴力得到。

求原根代码:(下面代码是求素数p的原根,如果不是素数,需要求出p的欧拉函数值,由于是素数,所以欧拉函数值为p-1)

 ll pow(ll a, ll b, ll m)
{
a %= m;
ll ans = ;
while(b)
{
if(b & )ans = ans * a % m;
a = a * a % m;
b /= ;
}
return ans % m;
}
int tot;//素因子个数
int a[];
void get_fact(ll n)//质因数分解n
{
for(ll i = ; i * i <= n; i++)
{
if(n % i == )
{
a[tot++] = i;
while(n % i == )n /= i;
}
}
if(n != )a[tot++] = n;
}
bool g_test(ll g, ll p)//测试g是不是p的原根 此处p是素数 欧拉函数值为p - 1
{
for(ll i = ; i < tot; i++)
{
if(pow(g, (p - ) / a[i], p) == )return false;
}
return true;
}
int proot(ll p)
//求解p最小原根,本题p为素数
//返回最小的原根
{
get_fact(p - );//素数的欧拉函数值为p - 1
int g = ;
while()
{
if(g_test(g, p))return g;
g++;
}
}

阶&原根的更多相关文章

  1. [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)

    目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...

  2. 快速傅里叶变换FFT / NTT

    目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明 ...

  3. 快速傅里叶变换(FFT)学习笔记(其二)(NTT)

    再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...

  4. 51nod1135(求最小原根)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1135 题意:中文题诶- 思路:设m是正整数,a是整数,若a模 ...

  5. 51nod 1135 原根

    题目链接:51nod 1135 原根 设 m 是正整数,a是整数,若a模m的阶等于φ(m),则称 a 为 模m的一个原根.(其中φ(m)表示m的欧拉函数) 阶:gcd(a,m)=1,使得成立的最小的 ...

  6. 51nod--1135 原根 (数论)

    题目: 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 给出1个质数P,找出P最小的原根. Input 输入1个质数P(3 <= P ...

  7. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  8. hdu-1395 2^x mod n = 1---求阶(欧拉函数)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1395 题目大意: 题目中给出输入一个整数n,要求一个最小整数的x,使得2^x mod n=1; 解题 ...

  9. 求同余方程x^A=B(mod m)的解个数(原根与指标)

    求方程:的解个数 分析:设,那么上述方程解的个数就与同余方程组:的解等价. 设同于方程的解分别是:,那么原方程的解的个数就是 所以现在的关键问题是求方程:的解个数. 这个方程我们需要分3类讨论: 第一 ...

随机推荐

  1. RequireJs使用快速入门

    前言:Requirejs作为一个ES5环境流行的模块加载器,在很多项目中使用它.而且这个开源库任然在更新,同类产品seajs已经不更新了. ES6之后引入import 或者使用Commonjs的方式引 ...

  2. input:checkbox 是否被选中?

    <input type="checkbox" id="checkbox1"> <script> $(function(){ $(&quo ...

  3. wrqer

  4. tomcat中文请求乱码问题

    使用tomcat做服务时,如果发送的url请求中包含中文字符,可能会出现乱码问题:

  5. [android] socket在手机上的应用

    1.手机助手 1.1 USB链接 可以读取手机的PID和VID,确定唯一的设备,可以给手机安装对应的驱动等 socket在固定端口通信 1.2 WIFI链接 pc在电脑在整个网段发送UDP数据包,手机 ...

  6. C10K问题摘要

    本文的内容是下面几篇文章阅读后的内容摘要: http://www.kegel.com/c10k.html (英文版) http://www.oschina.net/translate/c10k (中文 ...

  7. jQuery知识点学习整理

    零.jQuery中操作css的方法 1.$("p").css("background-color"); 返回首个匹配元素的background-color的值. ...

  8. mysql 笔记3

    --建库create database dsdb DEFAULT CHARACTER set utf8 collate utf8_general_ci;/*删除数据库drop DATABASE 数据库 ...

  9. 纯js轮播图

    <div id="wrapper"> <div id="container"> <img src="http://ima ...

  10. 把连接中传的参数截取出来变成一个json对象

    获取url function test() { var url=window.location.search; if(url.indexOf("?")!=-1) { var str ...