Keras网络层之常用层Core
常用层
常用层对应于core模块,core内部定义了一系列常用的网络层,包括全连接、激活层等
Dense层
keras.layers.core.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
Dense就是常用的全连接层,所实现的运算是output = activation(dot(input ,kernel) + bias ).其中activation是逐元素计算的激活函数,kernel是本层的权值矩阵,bias为偏置向量,只有当use_bias=True才会添加。
如果本层的输入数据的维度大于2,则会先被压为与kernel相匹配的大小。
#as first Layer in a sequential model:
#as first Layer in a sequential model:
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
#now the model will take as input arrays of shape(* , 16)
#and output arrays of shape (* , 32)
#after the first layer , you don't need to specify
#the size of the input anymore:
model.add(Dense(32))
- units:大于0的整数,代表该层的输出维度
- activation:激活函数,为预定义的激活函数名,或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x) = x)
- use_bias:布尔值,是否使用偏置项
- kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。
- bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。
- kernel_regularizer:施加在权重上的正则项,为Regularizer对象
- bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象
- activity_regularizer:施加在输出上的正则项,为Regularizer对象
- kernel_constraints:施加在权重上的约束项,为Constraints对象
- bias_constraints:施加在偏置上的约束项,为Constraints对象
输入
形如(batch_size,.......,input_dim)的nD张量,最常见的情况为(batch_size,input_dim)的2D张量
输出
形如(batch_size,..........,units)的nD张量,最常见的情况为(batch_size,units)的2D张量
Activation层
keras.layers.core.Activation(activation)
激活层对一个层的输出施加激活函数
参数
- activation:将要使用的激活函数,为预定义激活函数名或一个Tensorflow/theano的函数。
输入shape
任意,当使用激活层作为第一层时,要指定input_shape
输出shape
与输入shape相同
Dropout层
keras.layers.core.Dropout(rate , noise_shape=None ,seed=None)
为输入数据施加Dropout。Dropout将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,Dropout层用于防止过拟合。
参数
- rate:0~1的浮点数,控制需要断开的神经元的比例
- noise_shape:整数张量,为将要应用在输入上的二值Dropout mask的shape,例如你的输入为(batch_size,timesteps,features),并且你希望在各个时间步上的Dropout mask都相同,则可传入noise_shape=(batch_size,1,features)
- seed:整数,使用随机数种子
Flatten层
keras.layers.core.Flatten()
Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过度。Flatten不影响batch的大小。
例子
model = Sequential()
model.add(Convolution2D(64,3,3,border_mode='same',input_shape=(3,32,32))) #now:model.output_shape ==(None,64,32,32) model.add(Flatten())
#now:model.output_shape == (None,65536)
Reshape层
keras.layers.core.Reshape(target_shape)
Reshape层用来将输入shape转换为特定的shape
参数
- target_shape:目标shape,为整数的tuple,不包含样本数目的维度(batch大小)
输入shape
任意,但输入的shape必须固定。当使用该层为模型首层时,需要指定input_shape参数
输出shape
(batch_size,)+target_shape
例子
#as first Layer in a Sequential model
model = Sequential()
model.add(Reshape((3,4),input_shape=(12,)))
#now:model.output_shape == (None,3,4)
#note: 'None' is the batch dimension # as intermediate layer in a Sequential model
model.add(Reshape((6, 2)))
# now: model.output_shape == (None, 6, 2) # also supports shape inference using `-1` as dimension
model.add(Reshape((-1, 2, 2)))
# now: model.output_shape == (None, 3, 2, 2)
Permute层
keras.layers.core.Permute(dims)
Permute层将输入的维度按照给定模式进行重排,例如,当需要将RNN和CNN网络连接时,可能会用到该层。
参数
- dims:整数tuple,指定重排的模式,不包含样本数的维度。重排模式的下标从1开始。例如(2,1)代表将输入的第二个维度重排到第二个维度
例子
model = Sequential()
model.add(Permute((2,1), input_shape=(10,64)))
#now:model.output_shape == (None, 64,10)
#note: 'None' is the batch dimension
输入shape
任意,当使用激活层作为第一层时,要指定input_shape
输出shape
与输入相同,但是其维度按照指定的模式重新排列
RepeatVecor层
keras.layers.core.RepeatVector(n)
RepeatVector层将输入重复n次
参数
- n:整数,重复的次数
输入shape
形如(nb_samples,features)的2D张量
输出shape
形如(nb_samples,features)的3D张量
例子
model = Sequential()
model.add(Dense(32,input_dim=32)) #now:model.output_shape == (None,32)
#note:'None' is the batch dimension model.add(RepeatVector(3))
#now:model.output_shape == (None,3,32)
Lambda层
keras.layers.core.Lambda(function,output_shape,mask=None,arguments=None)
本函数用以对上一层的输出施以任何Theano/TensorFlow表达式
参数
- function:要实现的函数,该函数仅接受一个变量,即上一层的输出
- output_shape:函数应该返回的值的shape,可以是一个tuple,也可以是一个根据输入shape计算输出的shape的函数
- mask:掩膜
- arguments:可选,字典,用来记录向函数中传递的其他关键字参数
例子
# add a x -> x^2 layer
model.add(Lambda(lambda x: x ** 2)) def antirectifier(x):
x -= K.mean(x, axis=1, keepdims=True)
x = K.l2_normalize(x, axis=1)
pos = K.relu(x)
neg = K.relu(-x)
return K.concatenate([pos, neg], axis=1) def antirectifier_output_shape(input_shape):
shape = list(input_shape)
assert len(shape) == 2 # only valid for 2D tensors
shape[-1] *= 2
return tuple(shape) model.add(Lambda(antirectifier,
output_shape=antirectifier_output_shape))
输入shape
任意,当使用该层作为第一层时,要指定input_shape
输出shape
由output_shape参数指定的输出shape,当使用tensorflow时可自动推断
ActivityRegularizer层
keras.layers.core.ActivityRegularization(l1=0.0,l2=0.0)
经过本层的数据不会有任何变化,但会基于其激活值更新损失函数值
参数
- l1:1范数正则因子(正浮点数)
- l2:2范数正则因子(正浮点数)
输入shape
任意,当使用该层作为第一层时,要指定input_shape
输出shape
与输入shape相同
Masking层
keras.layers.core.Masking(mask_value=0.0)
使用给定的值对输入的序列信号进行“屏蔽”,用以定位需要跳过的时间步
对于输入张量的时间步,即输入张量的第1维度(维度从0开始算),如果输入张量在该时间步上都等于mask_value,则该时间步在模型接下来的所有层(只需要支持masking)被跳过(屏蔽)。
如果模型接下来的一些层不支持masking,却接受到masking过的数据,则抛出异常,则抛出异常。
例子
考虑输入数据x是一个形如(samples,timesteps,features)的张量,现将其送入LSTM层。因为你缺少时间步为3和5的信号,所以你希望将其掩盖。这时候应该:
- 赋值x[:,3,:] = 0. , x[:,5,:] = 0.
- 在LSTM层之前插入mask_value=0.的Masking
model = Sequential()
model.add(Masking(mask_value=0,input_shape=(timesteps,features)))
model.add(LSTM(32))
Keras网络层之常用层Core的更多相关文章
- Keras网络层之卷积层
卷积层 Cov1D层 keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding='valid', dilat ...
- keras_基本网络层结构(1)_常用层
参考文献: https://blog.csdn.net/sinat_26917383/article/details/72857454 http://keras-cn.readthedocs.io/e ...
- keras模块学习之层(layer)的使用-笔记
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! keras的层主要包括: 常用层(Core).卷积层(Convolutional).池化层(Pooling).局部连接层.递归层(R ...
- 【转】Caffe初试(七)其它常用层及参数
本文讲解一些其它的常用层,包括:softmax-loss层,Inner Product层,accuracy层,reshape层和dropout层及它们的参数配置. 1.softmax-loss sof ...
- Caffe学习系列(5):其它常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...
- 转 Caffe学习系列(5):其它常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...
- 4、Caffe其它常用层及参数
借鉴自:http://www.cnblogs.com/denny402/p/5072746.html 本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accu ...
- caffe(5) 其他常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...
- Keras常用层
Dense层:全连接层 Activatiion层:激活层,对一个层的输出施加激活函数 Dropout层:为输入数据施加Dropout.Dropout将在训练过程中每次更新参数时按一定概率(rate)随 ...
随机推荐
- 5.14日学习内容1:jquery表单相关知识
<script> $comment.animate({height:'+=50'},400);//在原来的基础上加50: $('.smaller').click(function(){ i ...
- eclipse配置代码自动补全auto-completion
你如果使用的是JAVA EE的模式,就这样配置: 1. Window>Preferences>Java>Editor>Content Assist>Auto Activa ...
- Vue 混合
混合(mixins)是一种分发vue组件中可复用功能的非常灵活的方式.混合对象可以可以包含任意组件选项.以组件使用混合对象时,所有混合对象的选项将被混合到该组件本身的选项. //定义一个混合对象 va ...
- 使用AccessibilityService实现微信自己主动抢红包
近期要实现微信自己主动抢红包的功能.使用AccessibilityService来开发,这里主要写一下逻辑以及注意点. 注意点 1.搜索keyword 我们实现某个功能比方点击等须要找到相应的对象然后 ...
- 在java语言中int 和 Integer 有什么区别
在java语言中int 和 Integer 有什么区别 解答:int是基本数据类型,Integer是int的包装类,属于引用类型
- 为什么需要标准IO缓冲?
(转)标准I/O缓冲:全缓冲.行缓冲.无缓冲 标准I/O库提供缓冲的目的是尽可能地减少使用read和write调用的次数.它也对每个I/O流自动地进行缓冲管理,从而避免了应用程序需要考虑这一点所带来的 ...
- 蓝桥杯 第三届C/C++预赛真题(10) 取球游戏(博弈)
今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断. 我们约定: 每个人从盒子中取出的球的数目必须是:1 ...
- mui 单页面下拉刷新
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 报错An internal error occurred during: "reload maven project". java.lang.NullPointerException
新建了一个maven项目,由于有问题就删除了,但是卡住了就强制关闭了. 查了一下是由于由于没有正常关机导致eclipse无法将数据正常写入配置文件导致无法启动.所以报这样一个异常. 最后是这样解决的: ...
- Tomcat unable to start within 45 seconds.
解决的方法当然是设定这个时间,让其大于45秒,修改在当前项目所在的workspace\.metadata\.plugins\org.eclipse.wst.server.core\servers.xm ...