Pandas

  • pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
  • Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。
  • pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
  >>> from pandas import Series, DataFrame

  >>> import pandas as pd

A.pandas

函数 说明

pd.isnull(series)

pd.notnull(series)

判断是否为空(NaN)

判断是否不为空(not NaN)

   
   

2.2.A.1 pandas常用函数

B.Series

    Series可以运用ndarray或字典的几乎所有索引操作和函数,融合了字典和ndarray的优点。

属性 说明
values 获取数组
index 获取索引
name values的name
index.name 索引的name
2.2.B.1 Series常用属性
 
函数 说明
Series([x,y,...])Series({'a':x,'b':y,...}, index=param1) 生成一个Series
Series.copy() 复制一个Series 

Series.reindex([x,y,...], fill_value=NaN)

Series.reindex([x,y,...], method=NaN)

Series.reindex(columns=[x,y,...])

重返回一个适应新索引的新对象,将缺失值填充为fill_value

返回适应新索引的新对象,填充方式为method

对列进行重新索引

Series.drop(index) 丢弃指定项
Series.map(f) 应用元素级函数 
   
排序函数 说明
Series.sort_index(ascending=True) 根据索引返回已排序的新对象
Series.order(ascending=True) 根据值返回已排序的对象,NaN值在末尾
Series.rank(method='average', ascending=True, axis=0) 为各组分配一个平均排名

df.argmax()

df.argmin()

返回含有最大值的索引位置

返回含有最小值的索引位置

2.2.B.2 Series常用函数

    reindex的method选项:

      ffill, bfill     向前填充/向后填充
      pad, backfill   向前搬运,向后搬运
    rank的method选项
      'average'    在相等分组中,为各个值分配平均排名
      'max','min'   使用整个分组中的最小排名
      'first'      按值在原始数据中出现的顺序排名

C.DataFrame

  • DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。
  • DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。
  • DataFrame可以通过类似字典的方式或者.columnname的方式将列获取为一个Series。
  • 行也可以通过位置或名称的方式进行获取。
  • 为不存在的列赋值会创建新列。

    >>> del frame['xxx']  # 删除列

属性 说明
values DataFrame的值
index 行索引
index.name 行索引的名字
columns 列索引
columns.name 列索引的名字
ix 返回行的DataFrame
ix[[x,y,...], [x,y,...]] 对行重新索引,然后对列重新索引
T frame行列转置
   

2.2.C.1 DataFrame常用属性

函数 说明

DataFrame(dict, columns=dict.index, index=[dict.columnnum])

DataFrame(二维ndarray)

DataFrame(由数组、列表或元组组成的字典)

DataFrame(NumPy的结构化/记录数组)

DataFrame(由Series组成的字典)

DataFrame(由字典组成的字典)

DataFrame(字典或Series的列表)

DataFrame(由列表或元组组成的列表)

DataFrame(DataFrame)

DataFrame(NumPy的MaskedArray)

构建DataFrame

数据矩阵,还可以传入行标和列标

每个序列会变成DataFrame的一列。所有序列的长度必须相同

类似于“由数组组成的字典”

每个Series会成为一列。如果没有显式制定索引,则各Series的索引会被合并成结果的行索引

各内层字典会成为一列。键会被合并成结果的行索引。

各项将会成为DataFrame的一行。索引的并集会成为DataFrame的列标。

类似于二维ndarray

沿用DataFrame

类似于二维ndarray,但掩码结果会变成NA/缺失值

df.reindex([x,y,...], fill_value=NaN, limit)

df.reindex([x,y,...], method=NaN)

df.reindex([x,y,...], columns=[x,y,...],copy=True)

返回一个适应新索引的新对象,将缺失值填充为fill_value,最大填充量为limit

返回适应新索引的新对象,填充方式为method

同时对行和列进行重新索引,默认复制新对象。

df.drop(index, axis=0) 丢弃指定轴上的指定项。
   
排序函数 说明

df.sort_index(axis=0, ascending=True)

df.sort_index(by=[a,b,...])

根据索引排序
   
汇总统计函数 说明
df.count() 非NaN的数量
df.describe() 一次性产生多个汇总统计

df.min()

df.min()

最小值

最大值

df.idxmax(axis=0, skipna=True)

df.idxmin(axis=0, skipna=True)

返回含有最大值的index的Series

返回含有最小值的index的Series

df.quantile(axis=0) 计算样本的分位数

df.sum(axis=0, skipna=True, level=NaN)

df.mean(axis=0, skipna=True, level=NaN)

df.median(axis=0, skipna=True, level=NaN)

df.mad(axis=0, skipna=True, level=NaN)

df.var(axis=0, skipna=True, level=NaN)

df.std(axis=0, skipna=True, level=NaN)

df.skew(axis=0, skipna=True, level=NaN)

df.kurt(axis=0, skipna=True, level=NaN)

df.cumsum(axis=0, skipna=True, level=NaN)

df.cummin(axis=0, skipna=True, level=NaN)

df.cummax(axis=0, skipna=True, level=NaN)

df.cumprod(axis=0, skipna=True, level=NaN)

df.diff(axis=0)

df.pct_change(axis=0)

返回一个含有求和小计的Series

返回一个含有平均值的Series

返回一个含有算术中位数的Series

返回一个根据平均值计算平均绝对离差的Series

返回一个方差的Series

返回一个标准差的Series

返回样本值的偏度(三阶距)

返回样本值的峰度(四阶距)

返回样本的累计和

返回样本的累计最大值

返回样本的累计最小值

返回样本的累计积

返回样本的一阶差分

返回样本的百分比数变化

   
   
计算函数 说明 

df.add(df2, fill_value=NaN, axist=1)

df.sub(df2, fill_value=NaN, axist=1)

df.div(df2, fill_value=NaN, axist=1)

df.mul(df2, fill_value=NaN, axist=1)

元素级相加,对齐时找不到元素默认用fill_value

元素级相减,对齐时找不到元素默认用fill_value

元素级相除,对齐时找不到元素默认用fill_value

元素级相乘,对齐时找不到元素默认用fill_value

df.apply(f, axis=0) 将f函数应用到由各行各列所形成的一维数组上
df.applymap(f) 将f函数应用到各个元素上
df.cumsum(axis=0, skipna=True) 累加,返回累加后的dataframe

2.2.C.2 Dataframe常用函数

索引方式 说明
df[val] 选取DataFrame的单个列或一组列
df.ix[val] 选取Dataframe的单个行或一组行
df.ix[:,val] 选取单个列或列子集
df.ix[val1,val2] 将一个或多个轴匹配到新索引
reindex方法 将一个或多个轴匹配到新索引
xs方法 根据标签选取单行或者单列,返回一个Series
icol、irow方法 根据整数位置选取单列或单行,并返回一个Series
get_value、set_value 根据行标签和列标签选取单个值

2.2.C.3 Dataframe常用索引方式

    运算:

      默认情况下,Dataframe和Series之间的算术运算会将Series的索引匹配到的Dataframe的列,沿着列一直向下传播。若索引找不到,则会重新索引产生并集。

D.Index

  • pandas的索引对象负责管理轴标签和其他元数据(比如轴名称等)。
  • 构建Series或DataFrame时,所用到的任何数组或其他序列的标签都会被转换成一个Index。
  • Index对象不可修改,从而在多个数据结构之间安全共享。
主要的Index对象 说明
Index 最广泛的Index对象,将轴标签表示为一个由Python对象组成的NumPy数组
Int64Index 针对整数的特殊Index
MultiIndex “层次化”索引对象,表示单个轴上的多层索引。可以看做由元组组成的数组
DatetimeIndex 存储纳秒级时间戳(用NumPy的Datetime64类型表示)
PeriodIndex 针对Period数据(时间间隔)的特殊Index

2.2.D.1 主要的Index属性

函数 说明
Index([x,y,...]) 创建索引
append(Index) 连接另一个Index对象,产生一个新的Index
diff(Index) 计算差集,产生一个新的Index
intersection(Index) 计算交集
union(Index) 计算并集
isin(Index) 检查是否存在与参数索引中,返回bool型数组
delete(i) 删除索引i处元素,得到新的Index
drop(str) 删除传入的值,得到新Index
insert(i,str) 将元素插入到索引i处,得到新Index
is_monotonic() 当各元素大于前一个元素时,返回true
is_unique() 当Index没有重复值时,返回true
unique() 计算Index中唯一值的数组

2.2.D.2 常用Index函数

Pandas常用操作方法的更多相关文章

  1. js数组常用操作方法小结(增加,删除,合并,分割等)

    本文实例总结了js数组常用操作方法.分享给大家供大家参考,具体如下: var arr = [1, 2, 3, 4, 5]; //删除并返回数组中第一个元素 var theFirst = arr.shi ...

  2. Set对象常用操作方法和遍历

    Set<String> set = new HashSet<String>(); /** * set的常用操作方法有: * add()向集合添加元素 clear()清空集合元素 ...

  3. pandas常用函数之shift

    shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示: index value1 A 0 B 1 C 2 D 3 那么如果执行以下代码: df.shift() 就会 ...

  4. pandas常用函数之diff

    diff函数是用来将数据进行某种移动之后与原数据进行比较得出的差异数据,举个例子,现在有一个DataFrame类型的数据df,如下: index value1 A 0 B 1 C 2 D 3 如果执行 ...

  5. Python文件常用操作方法

    Python文件常用操作方法 一.对File对象常用操作方法: file= open(file, mode='r', buffering=-1, encoding=None, errors=None, ...

  6. python 字符串常用操作方法

    python 字符串常用操作方法 python 字符串操作常用操作,如字符串的替换.删除.截取.赋值.连接.比较.查找.分割等 1.去除空格 str.strip():删除字符串两边的指定字符,括号的写 ...

  7. C++中vector容器的常用操作方法实例总结

    C++中vector容器的常用操作方法实例总结 参考 1. C++中vector容器的常用操作方法实例总结: 完

  8. pandas 常用函数整理

    pandas常用函数整理,作为个人笔记. 仅标记函数大概用途做索引用,具体使用方式请参照pandas官方技术文档. 约定 from pandas import Series, DataFrame im ...

  9. Python数据分析与挖掘所需的Pandas常用知识

    Python数据分析与挖掘所需的Pandas常用知识 前言Pandas基于两种数据类型:series与dataframe.一个series是一个一维的数据类型,其中每一个元素都有一个标签.series ...

随机推荐

  1. tensorflow 之模型的保存与加载(三)

    前面的两篇博文 第一篇:简单的模型保存和加载,会包含所有的信息:神经网络的op,node,args等; 第二篇:选择性的进行模型参数的保存与加载. 本篇介绍,只保存和加载神经网络的计算图,即前向传播的 ...

  2. Oracle密码过期,取消密码180天限制

    1.进入sqlplus模式 sqlplus / as sysdba; 2.帐户再改一次密码 alter user 用户名 identified by 原密码; 3.查看用户密码的有效期设置(一般默认的 ...

  3. Hive分析窗体函数之SUM,AVG,MIN和MAX

    行 AVG(pnum) OVER(PARTITION BYpolno ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOW ...

  4. 【活动】上线了|带你直击react年度盛会

    明后两天,ReactEurope 2016大会在巴黎举行,本次大会演讲主题有: React Native(动画及运行性能优化) Flux-like 数据架构(GraphQL 最佳实践与展望.Redux ...

  5. hdu3879 Base Station 最大权闭合子图 边权有正有负

    /** 题目:hdu3879 Base Station 最大权闭合子图 边权有正有负 链接:http://acm.hdu.edu.cn/showproblem.php?pid=3879 题意:给出n个 ...

  6. Vim -&gt; 移动光标

    Movement Command 前翻一屏 Ctrl + F 后翻一屏 Ctrl + B 前翻半屏 Ctrl + D 后翻半屏 Ctrl + U 前滚一行 Ctrl + E 后滚一行 Ctrl + Y ...

  7. 用JavaCV改写“100行代码实现最简单的基于FFMPEG+SDL的视频播放器 ”

    FFMPEG的文档少,JavaCV的文档就更少了.从网上找到这篇100行代码实现最简单的基于FFMPEG+SDL的视频播放器.地址是http://blog.csdn.net/leixiaohua102 ...

  8. 数据挖据之GeoHash核心原理解析

    引子 机机是个好动又好学的孩子,平日里就喜欢拿着手机地图点点按按来查询一些好玩的东西.某一天机机到北海公园游玩,肚肚饿了,于是乎打开手机地图,搜索北海公园附近的餐馆,并选了其中一家用餐. 饭饱之后机机 ...

  9. php程序员网址大全

    网址:http://www.tnten.com/ 常用网址 慕课网 知乎 GitHub CSDN社区 博客园 51CTO 开源中国 IT之家 简明魔法 编程论坛 InfoQ 实验楼 Unix技术网 中 ...

  10. (转)Java锁、自旋锁、CAS机制

    转自:http://www.jb51.net/article/55381.htm 转自:http://blog.csdn.net/aesop_wubo/article/details/7537278 ...