[LeetCode] Factorial Trailing Zeros
Well, to compute the number of trailing zeros, we need to first think clear about what will generate a trailing 0
? Obviously, a number multiplied by 10
will have a trailing 0
added to it. So we only need to find out how many 10
's will appear in the expression of the factorial. Since 10 = 2 * 5
and there are a bunch more 2
's (each even number will contribute at least one 2
), we only need to count the number of 5
's.
Now let's see what numbers will contribute a 5
. Well, simply the multiples of 5
, like 5, 10, 15, 20, 25, 35, ...
. So is the result simply n / 5
? Well, not that easy. Notice that some numbers may contribute more than one 5
, like 25 = 5 * 5
. Well, what numbers will contribute more than one 5
? Ok, you may notice that only multiples of the power of 5
will contribute more than one 5
. For example, multiples of 25
will contribute at least two 5
's.
Well, how to count them all? If you try some examples, you may finally get the result, which is n / 5 + n / 25 + n / 125 + ...
. The idea behind this expression is: all the multiples of 5
will contribute one 5
, the multiples of 25
will contribute one more 5
and the multiples of 125
will contribute another one more 5
... and so on. Now, we can write down the following code, which is pretty short.
class Solution {
public:
int trailingZeroes(int n) {
int count = ;
for (long long i = ; n / i; i *= )
count += n / i;
return count;
}
};
[LeetCode] Factorial Trailing Zeros的更多相关文章
- [CareerCup] 17.3 Factorial Trailing Zeros 求阶乘末尾零的个数
LeetCode上的原题,讲解请参见我之前的博客Factorial Trailing Zeroes. 解法一: int trailing_zeros(int n) { ; while (n) { re ...
- LeetCode Factorial Trailing Zeroes Python
Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. 题目意思: n求阶乘 ...
- [LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...
- LeetCode Factorial Trailing Zeroes
原题链接在这里:https://leetcode.com/problems/factorial-trailing-zeroes/ 求factorial后结尾有多少个0,就是求有多少个2和5的配对. 但 ...
- 关于[LeetCode]Factorial Trailing Zeroes O(logn)解法的理解
题目描述: Given an integer n, return the number of trailing zeroes in n!. 题目大意: 给定一个整数n,返回n!(n的阶乘)结果中后缀0 ...
- [LeetCode] Factorial Trailing Zeroes 阶乘末尾0
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...
- Python3解leetcode Factorial Trailing Zeroes
问题描述: Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 ...
- LeetCode Factorial Trailing Zeroes (阶乘后缀零)
题意:如标题 思路:其他文章已经写过,参考其他. class Solution { public: int trailingZeroes(int n) { <? n/: n/+trailingZ ...
- 2016.5.16——leetcode:Rotate Array,Factorial Trailing Zeroe
Rotate Array 本题目收获: 题目: Rotate an array of n elements to the right by k steps. For example, with n = ...
随机推荐
- Node.js搭建本地web服务(转)
http://www.cnblogs.com/wangfupeng1988/p/4143996.html https://github.com/finderL/webserver
- 如何解决MySQL连接超时关闭
最近做网站有一个站要用到WEB网页采集器功能,当一个PHP脚本在请求URL的时候,可能这个被请求的网页非常慢慢,超过了mysql的 wait-timeout时间,然后当网页内容被抓回来后,准备插入到M ...
- atitit. 分销系统规划p8k
atitit. 分销系统规划p8k 1. 商户平台管理 overview2 1.1. 分销业务管理2 1.2. 文案管理2 1.3. 订单管理3 1.4. 统计报表3 1.5. 财务结算3 1.6. ...
- C#.NET中使用BackgroundWorker在模态对话框中显示进度条
这里是一个示例,其中展示了如何使用Backgroundworker对象在模态对话框中显示后台操作的实时进度条. 首先是主窗体代码: using System; using System.Collect ...
- Uploadify使用源码
上传图片页面绑定源码如下: $("#uploadify").uploadify({ 'uploader' : basePath+'commons/uploadfiles/uploa ...
- 自动化软件部署的shell脚本
在实际项目中,我们经常用到需要自动化部署软件的情况,这种情况下,我们就不能人为地在命令行下敲击命令了,一切都需要通过shell脚本自动化完成.所谓自动化完成,其实也就是通过写shell程序,模拟人为敲 ...
- 解决 Visual Studio For Mac 还原包失败问题
体验了一把改名部最新的杰作,总体感觉挺好,也能看出微软在跨平台这方面所做出的努力. 可能是预览版的缘故,还是遇到一个比较大的问题,创建netcore项目后,依赖包还原失败,错误信息如下: 可以先试着手 ...
- vs2003 不断提示 已过期 问题
工作时曾遇到使用 vs2003 生成后,点击"调试“或者"执行“后不断提示 类似“已过期,是否要重新生成”这样的问题. 当时的情况是 :我要实现的功能和"时间" ...
- ajax取消重复请求
var pendingRequests = {}; $.ajaxPrefilter(function(options, originalOptions, jqXHR) { var key = opti ...
- 嵌入式开发之davinci--- MSB和LSB
简介: MSB是Most Significant Bit的缩写,最高有效位.在二进制数中,MSB是最高加权位.与十进制数字中最左边的一位类似.通常,MSB位于二进制数的最左侧,LSB位于二进制数的最右 ...