题目描述

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter. The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction. Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse. Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

约翰的牛们非常害怕淋雨,那会使他们瑟瑟发抖.他们打算安装一个下雨报警器,并且安排了一个撤退计划.他们需要计算最少的让所有牛进入雨棚的时间.    牛们在农场的F(1≤F≤200)个田地上吃草.有P(1≤P≤1500)条双向路连接着这些田地.路很宽,无限量的牛可以通过.田地上有雨棚,雨棚有一定的容量,牛们可以瞬间从这块田地进入这块田地上的雨棚    请计算最少的时间,让每只牛都进入雨棚.

输入

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i. * Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

    第1行:两个整数F和P;
    第2到F+1行:第i+l行有两个整数描述第i个田地,第一个表示田地上的牛数,第二个表示田地上的雨棚容量.两个整数都在0和1000之间.
    第F+2到F+P+I行:每行三个整数描述一条路,分别是起点终点,及通过这条路所需的时间(在1和10^9之间).

输出

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

一个整数,表示最少的时间.如果无法使牛们全部进入雨棚,输出-1.

样例输入

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

样例输出

110


题解

floyd+二分+拆点+网络流

先用floyd求出任意两点之间的距离。

然后二分答案,若i与j之间的距离小于等于mid,则将i与j'(拆出来的点)间连一条容量为正无穷的边。

将源点与每个点间连一条容量为牛数的边,将每个拆出来的点与汇点间连一条容量为牛棚容量的边。

然后跑网络流,判断是否满流即可。

注意图可以是不连通的,所以当ans过大时,说明必须要用到题目中不存在的边,即无论如何都不能满足题意,输出-1。

注意距离要开long long。

#include <cstdio>
#include <cstring>
#include <queue>
#define inf 0x3fffffff
using namespace std;
queue<int> q;
long long dis[201][201];
int a[201] , b[201] , head[403] , to[180000] , val[180000] , next[180000] , cnt , s , t , deep[403];
void add(int x , int y , long long z)
{
to[++cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
bool bfs()
{
int x , i;
while(!q.empty())
q.pop();
memset(deep , 0 , sizeof(deep));
deep[s] = 1;
q.push(s);
while(!q.empty())
{
x = q.front();
q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !deep[to[i]])
{
deep[to[i]] = deep[x] + 1;
if(to[i] == t)
return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t)
return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && deep[to[i]] == deep[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) deep[to[i]] = 0;
val[i] -= k;
val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
bool judge(int n , long long mid , int sum)
{
memset(head , 0 , sizeof(head));
memset(to , 0 , sizeof(to));
memset(val , 0 , sizeof(val));
memset(next , 0 , sizeof(next));
cnt = 1;
int i , j , maxflow = 0;
for(i = 1 ; i <= n ; i ++ )
{
add(s , i , a[i]);
add(i , s , 0);
add(i + n , t , b[i]);
add(t , i + n , 0);
for(j = 1 ; j <= n ; j ++ )
{
if(i == j || dis[i][j] <= mid)
add(i , j + n , inf) , add(j + n , i , 0);
}
}
while(bfs())
maxflow += dinic(s , inf);
return maxflow == sum;
}
int main()
{
int n , m , i , j , k , x , y , suma = 0 , sumb = 0;
long long z , l = 0 , r = 0 , mid , ans = -1;
scanf("%d%d" , &n , &m);
s = 0 , t = 2 * n + 1;
for(i = 1 ; i <= n ; i ++ )
scanf("%d%d" , &a[i] , &b[i]) , suma += a[i] , sumb += b[i];
memset(dis , 0x3f , sizeof(dis));
for(i = 1 ; i <= m ; i ++ )
scanf("%d%d%lld" , &x , &y , &z) , dis[x][y] = dis[y][x] = min(dis[x][y] , z);
if(suma > sumb)
{
printf("-1\n");
return 0;
}
for(k = 1 ; k <= n ; k ++ )
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
dis[i][j] = min(dis[i][j] , dis[i][k] + dis[k][j]);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
if(i != j)
r = max(r , dis[i][j]);
while(l <= r)
{
mid = (l + r) >> 1;
if(judge(n , mid , suma))
ans = mid , r = mid - 1;
else
l = mid + 1;
}
printf("%lld\n" , ans < 10000000000000ll ? ans : -1);
return 0;
}

【bzoj1738】[Usaco2005 mar]Ombrophobic Bovines 发抖的牛 Floyd+二分+网络流最大流的更多相关文章

  1. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛( floyd + 二分答案 + 最大流 )

    一道水题WA了这么多次真是.... 统考终于完 ( 挂 ) 了...可以好好写题了... 先floyd跑出各个点的最短路 , 然后二分答案 m , 再建图. 每个 farm 拆成一个 cow 点和一个 ...

  2. BZOJ1738 [Usaco2005 mar]Ombrophobic Bovines 发抖的牛

    先预处理出来每个点对之间的最短距离 然后二分答案,网络流判断是否可行就好了恩 /************************************************************ ...

  3. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛

    Description 约翰的牛们非常害怕淋雨,那会使他们瑟瑟发抖.他们打算安装一个下雨报警器,并且安排了一个撤退计划.他们需要计算最少的让所有牛进入雨棚的时间.    牛们在农场的F(1≤F≤200 ...

  4. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛 网络流 + 二分 + Floyd

    Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the ...

  5. bzoj 1738 [Usaco2005 mar]Ombrophobic Bovines 发抖的牛 最大流+二分

    题目要求所有牛都去避雨的最长时间最小. 显然需要二分 二分之后考虑如何判定. 显然每头牛都可以去某个地方 但是前提是最短路径<=mid. 依靠二分出来的东西建图.可以发现这是一个匹配问题 din ...

  6. 【bzoj1733】[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 二分+网络流最大流

    题目描述 Farmer John is constructing a new milking machine and wishes to keep it secret as long as possi ...

  7. bzoj 1734: [Usaco2005 feb]Aggressive cows 愤怒的牛【二分+贪心】

    二分答案,贪心判定 #include<iostream> #include<cstdio> #include<algorithm> using namespace ...

  8. Ombrophobic Bovines

    poj2391:http://poj.org/problem?id=2391 题意:一个人有n个农场,每个农场都一个避雨的地方,每个农场有一些牛,每个避雨的地方能容纳牛的数量是有限的.农场之间有一些道 ...

  9. POJ 2391 Ombrophobic Bovines

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 4 ...

随机推荐

  1. Git使用规范(三)

    今天我们来介绍一下Git的一些操作,这个里面主要是一些我们平时遇到的一些问题 1.当我进入了一个分支的是时候,我在查看git log的时候,为什么会有别人的信息,我一直以为 这个是查看分支提交情况, ...

  2. The Git Parable:Git传说(转)

    The Git Parable:Git传说 -------- 毛球子好为人师 原文地址:http://tom.preston-werner.com/2009/05/19/the-git-parable ...

  3. jquery.validate验证,jquery.Form插件提交,主要可以异步提交文件

    <script type="text/javascript"> $(function () { $form = $("#manuForm"); $b ...

  4. 02-JVM内存模型:虚拟机栈与本地方法栈

    一.虚拟机栈(VM Stack) 1.1)什么是虚拟机栈 虚拟机栈是用于描述java方法执行的内存模型. 每个java方法在执行时,会创建一个“栈帧(stack frame)”,栈帧的结构分为“局部变 ...

  5. 「日常训练」 Genghis Khan the Conqueror(HDU-4126)

    题意 给定\(n\)个点和\(m\)条无向边(\(n\le 3000\)),需要将这\(n\)个点连通.但是有\(Q\)次(\(Q\le 10^4\))等概率的破坏,每次破坏会把\(m\)条边中的某条 ...

  6. [CF294B]Shaass and Bookshelf

    问题描述 Shaass拥有n本书.他想为他的所有书制作一个书架,并想让书架的长宽尽量小.第i本书的厚度是t[i],且这本书的纸张宽度是w[i].书的厚度是1或2,所有书都有同样的高度(即书架的高是均匀 ...

  7. 【WXS数据类型】String

    属性: 名称 值类型 说明 [String].constructor [String] 返回值为“String”,表示类型的结构字符串 [String].length [Number] 返回该字符串的 ...

  8. 爬虫2.1-scrapy框架-两种爬虫对比

    目录 scrapy框架-两种爬虫对比和大概流程 1. 传统spider爬虫 2. crawl型爬虫 3. 循环页面请求 4. scrapy框架爬虫的大致流程 scrapy框架-两种爬虫对比和大概流程 ...

  9. poj 2155 (二维树状数组 区间修改 求某点值)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 33682   Accepted: 12194 Descript ...

  10. MATLAB画图符号标注

    线型 说明 标记符 说明 颜色 说明 - 实线(默认) + 加号符 r 红色 -- 双划线 o 空心圆 g 绿色 : 虚线 * 星号 b 蓝色 :. 点划线 . 实心圆 c 青绿色 x 叉号符 m 洋 ...