[BZOJ5120] [2017国家集训队测试]无限之环
Description
曾经有一款流行的游戏,叫做InfinityLoop,先来简单的介绍一下这个游戏:
游戏在一个n×m的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在方格某些方向的边界的中点有接口
,所有水管的粗细都相同,所以如果两个相邻方格的公共边界的中点都有接头,那么可以看作这两个接头互相连接
。水管有以下15种形状:
游戏开始时,棋盘中水管可能存在漏水的地方。
形式化地:如果存在某个接头,没有和其它接头相连接,那么它就是一个漏水的地方。
玩家可以进行一种操作:选定一个含有非直线型水管的方格,将其中的水管绕方格中心顺时针或逆时针旋转90度。
直线型水管是指左图里中间一行的两种水管。
现给出一个初始局面,请问最少进行多少次操作可以使棋盘上不存在漏水的地方。
Input
第一行两个正整数n,m代表网格的大小。
接下来n行每行m数,每个数是[0,15]中的一个
你可以将其看作一个4位的二进制数,从低到高每一位分别代表初始局面中这个格子上、右、下、左方向上是否有水管接头。
特别地,如果这个数是000,则意味着这个位置没有水管。
比如3(0011(2))代表上和右有接头,也就是一个L型,而12(1100(2))代表下和左有接头,也就是将L型旋转180度。
n×m≤2000
Output
输出共一行,表示最少操作次数。如果无法达成目标,输出-1
Sample Input
2 3
3 14 12
3 11 12
Sample Output
2
Solution
这是个什么鬼题嘛....
思路不是很复杂,考虑网络流,每个点拆成五个,上下左右各一个,中间一个,设为\(P_{x,0..4}\)。
对网格图进行黑白染色,对于黑点,源点\(s\)向\(P_{x,0}\)连边;对于白点,\(P_{x,0}\)向\(t\)连边,容量\(+\infty\),费用\(0\)。
对于相邻的两个点,我们设黑点为发射点,白点为接收点,那么黑点另外四个点向相应的四周的点连边,比如说\(u=(x,y),v=(x+1,y)\),且\(u\)为黑点,那么我们可以连边\(P_{u,2} \to P_{v,4}\);若\(u\)为白点就连边\(P_{v,4}\to P_{u,2}\)。其中容量为\(1\),费用为\(0\)。
那么一个基本的框架就构造完成了,现在考虑如何旋转。
- 首先,对于任意一个图形,不考虑旋转,那么中心点向对应点连边,容量\(1\),费用\(0\)。
- 若当前点为直线或者没有,直接不管就好了。
- 设当前点的形状为\(x\),设\(t=bit\_cnt(x)\)表示当前点有几个连出去的边,那么可以分情况讨论:
- \(t=1\),向相邻方向连容量为\(1\),费用为\(1\)的边,向对面方向连费用\(2\)的边。
- \(t=2\),对于每个方向向对面方向连费用为\(1\),容量为\(1\)的边。
- \(t=3\),其实和\(t=1\)的情况差不多,相当于是反向连边,缺口那个方向相邻的向缺口连费用\(1\)的,相对的连费用为\(2\)的。
- 其实质上就相当于是每次旋转都只会移动一个方向,顺着这个思路画画图连边就好了,这也是为啥题目要规定直线不能转,因为直线转了就会有两个方向的改变。
然后这题就做完了,代码及其恶心...
#include<bits/stdc++.h>
using namespace std;
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
const int maxn = 2e5+10;
const int inf = 1e9;
int s,t,n,m,tot=1,cost,flow,sum;
int dis[maxn],vis[maxn],head[maxn],mp[maxn];
struct edge{int to,nxt,w,c;}e[maxn];
// emmm
int bfs() {
memset(dis,63,(t+1)*4);
memset(vis,0,(t+1)*4);
queue<int > q;q.push(s);dis[s]=0,vis[s]=1;
while(!q.empty()) {
int x=q.front();q.pop();vis[x]=0;
for(int i=head[x],v;i;i=e[i].nxt)
if(e[i].w>0&&dis[v=e[i].to]>dis[x]+e[i].c) {
dis[v]=dis[x]+e[i].c;
if(!vis[v]) q.push(v),vis[v]=1;
}
}return dis[t]<inf;
}
int dfs(int x,int f) {
vis[x]=1;
if(x==t) return cost+=f*dis[t],f;
int used=0;
for(int v,i=head[x];i;i=e[i].nxt)
if(e[i].w>0&&(!vis[v=e[i].to]||v==t)&&dis[v]==dis[x]+e[i].c) {
int d=dfs(e[i].to,min(f-used,e[i].w));
if(d>0) e[i].w-=d,e[i^1].w+=d,used+=d;
if(used==f) break;
}
return used;
}
int mcmf() {
while(bfs()) flow+=dfs(s,inf);return cost;
}
// ---------
void add(int u,int v,int w,int c) {e[++tot]=(edge){v,head[u],w,c},head[u]=tot;}
void ins(int u,int v,int w,int c,int bo) {if(!bo) swap(u,v);add(u,v,w,c),add(v,u,0,-c);}
int p(int x,int y,int tt) {return (x-1)*m+y+tt*n*m;}
const int dk[] = {0,2,1,4,3};
int main() {
read(n),read(m);s=n*m*5+1,t=s+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if((i+j)&1) ins(s,p(i,j,0),inf,0,1);
else ins(p(i,j,0),t,inf,0,1);
for(int i=1,x;i<=n;i++)
for(int j=1;j<=m;j++) {
if((i+j)&1) {
if(i>1) ins(p(i,j,2),p(i-1,j,4),1,0,1);
if(j>1) ins(p(i,j,3),p(i,j-1,1),1,0,1);
if(i<n) ins(p(i,j,4),p(i+1,j,2),1,0,1);
if(j<m) ins(p(i,j,1),p(i,j+1,3),1,0,1);
}
read(x);int bo=(i+j)&1;
int bit=__builtin_popcount(x),tt=1;
sum+=bit;
if(!x) continue;
if(x==5||x==10) {
for(int k=1;k<=4;k++)
if(x>>(k-1)&1) ins(p(i,j,0),p(i,j,dk[k]),1,0,bo);
continue;
}
if(bit==1) {
if(x==1) tt=2;else if(x==8) tt=3;else if(x==4) tt=4;
for(int k=1;k<=4;k++)
ins(p(i,j,tt),p(i,j,(tt+k+3)%4+1),1,min(k,4-k),bo);
} else if(bit==2) {
int a=0,b;
for(int k=1;k<=4;k++)
if((x>>(k-1))&1)
{if(!a) a=dk[k];else b=dk[k];}
ins(p(i,j,a),p(i,j,(a+5)%4+1),1,1,bo);
ins(p(i,j,b),p(i,j,(b+5)%4+1),1,1,bo);
} else if(bit==3) {
int mid,l;
if(x==11) mid=2;
else if(x==13) mid=3;
else if(x==14) mid=4;
else mid=1;l=(mid+5)%4+1;
for(int k=1;k<=4;k++)
if((x>>(k-1))&1) {
ins(p(i,j,dk[k]),p(i,j,l),1,dk[k]==mid?2:1,bo);
}
}
for(int k=1;k<=4;k++)
if(x>>(k-1)&1) ins(p(i,j,0),p(i,j,dk[k]),1,0,bo);
}
mcmf();
if((flow<<1)==sum) write(cost);else puts("-1");
return 0;
}
[BZOJ5120] [2017国家集训队测试]无限之环的更多相关文章
- BZOJ5120 [2017国家集训队测试]无限之环 费用流
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ5120 题意概括 原题挺简略的. 题解 本题好难. 听了任轩笛大佬<国家队神犇>的讲课才 ...
- bzoj 5120 [2017国家集训队测试]无限之环——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5120 旋转的话相当于去掉一个插头.新增一个插头,所以在这两个插头之间连边并带上费用即可. 网 ...
- bzoj 5120: [2017国家集训队测试]无限之环【最小费用最大流】
玄妙的建图-- 这种平衡度数的题按套路是先黑白染色然后分别连ST点,相邻格子连黑向白连费用1流量0的边,然后考虑费用怎么表示 把一个点拆成五个,上下左右中,中间点黑白染色连ST, 对于连S的点,中点连 ...
- BZOJ 5120: [2017国家集训队测试]无限之环(费用流)
传送门 解题思路 神仙题.调了一个晚上+半个上午..这道咋看咋都不像图论的题竟然用费用流做,将行+列为奇数的点和偶数的点分开,也就是匹配问题,然后把一个点复制四份,分别代表这个点的上下左右接头,如果有 ...
- BZOJ_2622_[2012国家集训队测试]深入虎穴_最短路
BZOJ_2622_[2012国家集训队测试]深入虎穴_最短路 Description 虎是中国传统文化中一个独特的意象.我们既会把老虎的形象用到喜庆的节日装饰画上,也可能把它视作一种邪恶的可怕的动物 ...
- 【BZOJ2622】[2012国家集训队测试]深入虎穴 次短路
[BZOJ2622][2012国家集训队测试]深入虎穴 Description 虎是中国传统文化中一个独特的意象.我们既会把老虎的形象用到喜庆的节日装饰画上,也可能把它视作一种邪恶的可怕的动物,例如“ ...
- 2017国家集训队作业Atcoder题目试做
2017国家集训队作业Atcoder题目试做 虽然远没有达到这个水平,但是据说Atcoder思维难度大,代码难度小,适合我这种不会打字的选手,所以试着做一做 不知道能做几题啊 在完全自己做出来的题前面 ...
- 2017国家集训队作业[agc016b]Color Hats
2017国家集训队作业[agc016b]Color Hats 题意: 有\(N\)个人,每个人有一顶帽子.帽子有不同的颜色.现在,每个人都告诉你,他看到的所有其它人的帽子共有多少种颜色,问有没有符合所 ...
- 2017国家集训队作业[agc016e]Poor Turkey
2017国家集训队作业[agc016e]Poor Turkey 题意: 一开始有\(N\)只鸡是活着的,有\(M\)个时刻,每个时刻有两个数\(X_i,Y_i\),表示在第\(i\)个时刻在\(X_i ...
随机推荐
- spring data jap操作
package com.example.demo; import com.example.entity.UserJ; import com.example.respository.UserJRespo ...
- MyBatis-自定义结果映射规则
1.自定义结果集映射规则 ①查询 <!-- public Employee getEmpById(Integer id); --> <select id="getEmpBy ...
- JMeter录制Web脚本
设置Firefox浏览器代理, 点击右上角的菜单: 点击选项: 点击高级: 点击设置: 点击手动配置代理, 输入本地的IP地址和端口号8888,与JMeter代理服务器的端口号保持一致: 好了,浏览器 ...
- 2.azkaban3.0安装
安装规划安装azkban1.安装配置数据库2.下载安装web server3.安装mulit executor4.安装azkaban插件AZKABAN参数安装出现的问题 安装规划 IP 角色 端口 1 ...
- 今年暑假不AC (贪心)
Description “今年暑假不AC?” “是的.” “那你干什么呢?” “看世界杯呀,笨蛋!” “@#$%^&*%...” 确实如此,世界杯来了,球迷的节日也来了,估计很多ACMer也会 ...
- dataTables工作总结
近期在工作中用到了dataTables,现在总结一下在工作中遇到的问题以及解决方法,如有不妥之处希望多多指教,定会改进. 首先这里用的是coloradmin框架,在vs环境下开发. 这里写一个容器用于 ...
- 【数位DP】题集
1.[HDOJ2089] 题意:求区间内不出现4和62的数的个数 解法:模板题 2.[HDOJ3555] 题意:求区间内不出现49的数的个数 解法:模板题 3.[HDOJ5179] 题意:对于一个十进 ...
- TCP/IP 三次握手四次挥手
TCP运输连接 TCP连接建立过程中要解决以下三个问题: (1)要使每一方能够确知双方的存在. (2)要允许双方协商一些参数(如最大窗口值.是否使用窗口扩大选项和时间戳选项以及服务质量等). (3)能 ...
- 3dContactPointAnnotationTool开发日志(十五)
有时候拖动一个窗口的时候可能直接拖出去了那就再也拖不回来只能reset重新来过: 于是开了个类成员变量在start里记录了一下panel的位置: var lp = panel.GetCompo ...
- 3dContactPointAnnotationTool开发日志(十)
要是那几个状态栏不能拖动的话岂不是显得太呆板了,于是我又参考Unity官方视频教程学习了如何实现拖动状态栏的功能,还挺简单的. 比如说要拖动这个PanelStatus面板,我只让使用者通过拖动 ...