[2018国家集训队][UOJ449] 喂鸽子 [dp+组合数学]
题面
思路
首先,这道题是可以暴力min-max反演+NTT做出来的......但是这个不美观,我来讲一个做起来舒服一点的做法
一个非常basic的idea:我们发现在一只鸽子吃饱以后再喂给它的玉米都是“无效”的,并且我们如此认为,那么有效的玉米数量是确定的:$nk$
吃饱序列和投喂序列
那么,我们考虑一个序列$r_i$,表示第$i$次喂完玉米之前,有多少只鸽子是吃饱的,我们称之为吃饱序列
注意到本题中每只鸽子互不相同,因此我们再确定一个“有效喂鸽子操作”的序列,我们称之为投喂序列
特别注意:吃饱序列的构造虽然部分依赖于投喂序列,但是投喂序列的出现概率是完全依赖于吃饱序列的
显然,对于一组操作序列和吃饱序列,我们可以得到这组序列出现的总概率:$Prob=\prod_{i=1}^{nk}P_{r_i}$
其中$P_i$表示吃饱了$i$个的情况下,下一个投喂选到我们的目标鸽子的概率
那么我们现在实际上把投喂序列变成了可以由吃饱序列求出来,而吃饱序列的下一项又反过来由投喂序列确定,这么一个情况
我们如果要考虑总贡献,我们发现还需要考虑最终成功完成一次有效投喂(注意因为前面算的是概率,这里只要随便投喂一个没吃饱的鸽子就可以了)的期望时间
这个时间$T_i=E_{r_i}$,其中$E_i=\frac{n}{n-i}$,这里表示在$i$个鸽子吃饱的前提下的有效投喂期望时间
那么,我们可以得到我们在确定了一个吃饱序列和对应的投喂序列时最终答案的表达式:$Ans=\prod_{i=1}{nk}P_{r_i}\sum_{i=1}{nk} E_{r_i}$
上式的两个部分分别代表每一个投喂序列出现的概率,以及这个吃饱序列的期望完成时间
转化为DP
这个东西不好处理,因为我们没有办法直接知道每次成功投喂以后会不会使吃饱序列的下一项+1(也就是有一只鸽子吃饱了)
注意到贡献都只和$r_i$有关系,而和目前没吃饱的鸽子吃掉的玉米的分配没有关系!
所以我们大可以随意分配这些没吃饱的鸽子吃掉的玉米,下文中简称为白玉米
那么我们可以基于上面的表达式得到一个$dp$的做法:
设$f[i][j]$表示投喂了$i$次,有$j$个鸽子吃饱了的总贡献,$g[i][j]$则表示上述情况出现的概率(也就是只考虑表达式中含$P_{r_i}$的部分)
那么我们把表达式转化一下:
$f[i][j]=\sum_{\lbrace r\rbrace} \prod_{x=1}{i}P_{r_x}\sum_{y=1}{i} E_{r_y}$
$f[i][j]=\sum_{\lbrace r\rbrace} (P_j\prod_{x=1}{i-1}P_{r_x})(E_j+\sum_{y=1}{i-1} E_{r_y})$
$f[i][j]=P_j\ast(\sum_{\lbrace r\rbrace} \prod_{x=1}{i-1}P_{r_x}\sum_{y=1}{i-1} E_{r_y})+P_j\ast E_j\ast(\sum_{\lbrace r\rbrace} \prod_{x=1}^{i-1}P_{r_x})$
$f[i][j]=P_jf[i-1][j]+P_jE_jg[i-1][j]$
这样我们就完成了没有新鸽子吃饱的情况下的$f[i][j]$的转移
那么对于$g[i][j]$的转移,很显然是$g[i][j]=P_jg[i-1][j]$,不再赘述
对于新加入的玉米使得一只鸽子吃饱的情况,我们需要对目前存在的白玉米进行染色,此时染色的方案数显然为$\binom{i-jk}{k-1}$
所以对于从$f[i][j]$到$f[i+1][j+1]$的转移,只需要在上面的转移的基础上乘上上述组合系数即可
若仍有疑问,可以参见代码的实现
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define MOD 998244353
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
inline int add(int a,int b){
a+=b;
if(a>=MOD) a-=MOD;
return a;
}
inline void addd(int &a,int b){
a+=b;
if(a>=MOD) a-=MOD;
}
inline int qpow(int a,int b){
int re=1;
while(b){
if(b&1) re=1ll*re*a%MOD;
a=1ll*a*a%MOD;b>>=1;
}
return re;
}
int n,m,fac[1000010],finv[1000010],inv[1000010];
inline void init(){
int i,len=1000000;
fac[0]=fac[1]=finv[0]=finv[1]=inv[1]=1;
for(i=2;i<=len;i++) inv[i]=1ll*(MOD-MOD/i)*inv[MOD%i]%MOD;
for(i=2;i<=len;i++) fac[i]=1ll*fac[i-1]*i%MOD;
finv[len]=qpow(fac[len],MOD-2);
for(i=len;i>2;i--) finv[i-1]=1ll*finv[i]*i%MOD;
}
inline int C(int x,int y){
if(x<0||y<0||x<y) return 0;
return 1ll*fac[x]*finv[y]%MOD*finv[x-y]%MOD;
}
int f[100010][110],g[100010][110],p[100010],e[100010];
int main(){
n=read();m=read();int i,j,tf,tg,tt;
init();
for(i=0;i<=n;i++) p[i]=inv[n-i],e[i]=1ll*n*inv[n-i]%MOD;
f[0][0]=0;g[0][0]=1;
for(i=0;i<n*m;i++){
for(j=0;j*m<=i;j++){
tg=1ll*g[i][j]*p[j]%MOD;
tf=add(1ll*f[i][j]*p[j]%MOD,1ll*p[j]*e[j]%MOD*g[i][j]%MOD);
tt=C(i-j*m,m-1);
addd(f[i+1][j],tf);
addd(g[i+1][j],tg);
addd(f[i+1][j+1],1ll*tf*tt%MOD);
addd(g[i+1][j+1],1ll*tg*tt%MOD);
}
}
// for(i=0;i<=n*m;i++) for(j=0;j*m<=i;j++) cout<<i<<' '<<j<<' '<<f[i][j]<<' '<<g[i][j]<<'\n';
cout<<(1ll*fac[n]*f[n*m][n]%MOD)<<'\n';
}
[2018国家集训队][UOJ449] 喂鸽子 [dp+组合数学]的更多相关文章
- P2183 [国家集训队]【一本通提高组合数学】礼物
[国家集训队]礼物 题目背景 一年一度的圣诞节快要来到了.每年的圣诞节小 E 都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小 E 心目中的重要性不同,在小 E 心中分量越重的人,收到的礼物会 ...
- NOI 国家集训队论文集
鉴于大家都在找这些神牛的论文.我就转载了这篇论文合集 国家集训队论文分类 组合数学 计数与统计 2001 - 符文杰:<Pólya原理及其应用> 2003 - 许智磊:<浅谈补集转化 ...
- ACM/IOI 历年国家集训队论文集和论文算法分类整理
国家集训队1999论文集 陈宏:<数据结构的选择与算法效率--从IOI98试题PICTURE谈起> 来煜坤:<把握本质,灵活运用--动态规划的深入探讨> 齐鑫:<搜索方法 ...
- < < < 2013年国家集训队作业 > > >
完成题数/总题数: 道/37道 1. A1504. Book(王迪): 数论+贪心 ★★☆ 2013中国国家集训队第二次作业 2. A1505. 树(张闻涛): 倍增LCA+可 ...
- 洛谷 P1407 [国家集训队]稳定婚姻 解题报告
P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...
- 洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...
- 洛谷 P1501 [国家集训队]Tree II 解题报告
P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...
- 洛谷 P2757 [国家集训队]等差子序列 解题报告
P2757 [国家集训队]等差子序列 题目描述 给一个\(1\)到\(N\)的排列\(\{A_i\}\),询问是否存在 \[1 \le p_1<p_2<p_3<p_4<p_5& ...
- 洛谷 P1505 [国家集训队]旅游 解题报告
P1505 [国家集训队]旅游 题目描述 \(\tt{Ray}\) 乐忠于旅游,这次他来到了\(T\)城.\(T\)城是一个水上城市,一共有 \(N\) 个景点,有些景点之间会用一座桥连接.为了方便游 ...
随机推荐
- Please ensure JDK installation is valid and compatible with the current OS
报错如下: Gradle sync failed: Could not run JVM from the selected JDK. Please ensure JDK installation is ...
- dubbo之main启动
一.dubbo的main启动在使用上面会简单的多,但是需要做一些简单的配置. dubbo.spring.config=classpath*:META-INF/spring/*.xml 备注:这个是默认 ...
- 华为LiteOS系统使用-任务调度函数-第一篇
1.最近项目遇到华为的LiteOS小型操作系统,使用学习 2. 先打开一个工程LiteOS_Kernel-master\projects\LPC824_LITE_KEIL 3. main.c里面2个关 ...
- Weka java.lang.reflect.InvocationTargetException
在用Weka导入数据的时候报 java.lang.reflect.InvocationTargetException 错误,Weka运行包没有给出详细的错误信息,无法查到. 直接调试Weka源码,发现 ...
- 承压计算:模拟+double
标题:承压计算 X星球的高科技实验室中整齐地堆放着某批珍贵金属原料. 每块金属原料的外形.尺寸完全一致,但重量不同.金属材料被严格地堆放成金字塔形. 7 ...
- asp.net mvc5 模式的现象思考
.net mv5简化了一些应用逻辑,与其说是mvc架构模式,不如说应用.net Entity更好. 现在你只需要去随便创建一个类 相关数据 然后用一个类去继承 DbContext 定义一个 DbSet ...
- sqoop-1.4.6安装与使用
一.安装 1.下载sqoop-1.4.6-bin.tar.gz并解压 2.修改conf/sqoop-env.sh,设置如下变量: export HADOOP_COMMON_HOME=/usr/loca ...
- 业务迁移---web
#本文是做记录使用,不做为任何参考文档# 迁移代码 将源代码scp至新的server上 搭建服务 yum安装nginx服务 yum install nginx #yum安装 service nginx ...
- VUE中关于表单提交的简单实现
main.js import Vue from "../vue.js"; import App from "./App.js"; //启动 new Vue({ ...
- Lake Counting(DFS连通图)
Description Due to recent rains, water has pooled in various places in Farmer John's field, which is ...