Tensorflow框架初尝试————搭建卷积神经网络做MNIST问题
Tensorflow是一个非常好用的deep learning框架
学完了cs231n,大概就可以写一个CNN做一下MNIST了
tensorflow具体原理可以参见它的官方文档
然后CNN的原理可以直接学习cs231n的课程。
另外这份代码本地跑得奇慢。。估计用gpu会快很多。
import loaddata
import tensorflow as tf #生成指定大小符合标准差为0.1的正态分布的矩阵
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial) #生成偏移变量
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #做W与x的卷积运算,跨度为1,zero-padding补全边界(使得最后结果大小一致)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #做2x2的max池化运算,使结果缩小4倍(面积上)
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1],
strides=[1, 2, 2, 1], padding = 'SAME') #导入数据
mnist = loaddata.read_data_sets('MNIST_data', one_hot=True) x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10]) #filter取5x5的范围,因为mnist为单色,所以第三维是1,卷积层的深度为32
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) #将输入图像变成28*28*1的形式,来进行卷积
x_image = tf.reshape(x, [-1, 28, 28, 1]) #卷积运算,activation为relu
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #池化运算
h_pool1 = max_pool_2x2(h_conv1) #第二个卷积层,深度为64,filter仍然取5x5
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) #做同样的运算
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #full-connected层,将7*7*64个神经元fc到1024个神经元上去
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024]) #将h_pool2(池化后的结果)打平后,进行fc运算
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #防止过拟合,fc层进行dropout处理,参数为0.5
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #第二个fc层,将1024个神经元fc到10个最终结果上去(分别对应0~9)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) #最后结果
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #误差函数使用交叉熵
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) #梯度下降使用adam算法
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #正确率处理
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #初始化
sess = tf.Session()
sess.run(tf.initialize_all_variables()) #进行训练
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = sess.run(accuracy, feed_dict = {
x:batch[0], y_:batch[1], keep_prob : 1.0})
print("step %d, accuracy %g" % (i, train_accuracy))
sess.run(train_step, feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5}) #输出最终结果
print(sess.run(accuracy, feed_dict={
x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))
Tensorflow框架初尝试————搭建卷积神经网络做MNIST问题的更多相关文章
- TensorFlow框架(4)之CNN卷积神经网络
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...
- TensorFlow框架(4)之CNN卷积神经网络详解
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...
- Pytorch搭建卷积神经网络用于MNIST分类
import torch from torch.utils.data import DataLoader from torchvision import datasets from torchvisi ...
- [转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR
Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Micha ...
- 深度学习笔记 (二) 在TensorFlow上训练一个多层卷积神经网络
上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首 ...
- TensorFlow——CNN卷积神经网络处理Mnist数据集
CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...
- 3层-CNN卷积神经网络预测MNIST数字
3层-CNN卷积神经网络预测MNIST数字 本文创建一个简单的三层卷积网络来预测 MNIST 数字.这个深层网络由两个带有 ReLU 和 maxpool 的卷积层以及两个全连接层组成. MNIST 由 ...
- TensorFlow系列专题(十四): 手把手带你搭建卷积神经网络实现冰山图像分类
目录: 冰山图片识别背景 数据介绍 数据预处理 模型搭建 结果分析 总结 一.冰山图片识别背景 这里我们要解决的任务是来自于Kaggle上的一道赛题(https://www.kaggle.com/c/ ...
- 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...
随机推荐
- 使用element-ui 的table 渲染数据遇到的问题
通常我们使用一个table 来渲染服务的返回来的数据时,数据结构一般都是按row 来返回的,并且表头也是固定的 但是如果接口返回的数据结构不是我们想要的,表头也不确定时,我们该如何解析数据,将数据进行 ...
- 转:Docker创建centos的LNMP镜像
转自:http://www.vckai.com/p/29 1. 安装docker 这个就不说了,不会的可以看下我之前的文章<Docker介绍及安装>. 1)启动docker # serv ...
- Java开发工程师(Web方向) - 04.Spring框架 - 第5章.Web框架
第5章--Web框架 Web框架概述 Web框架单元测验 本次得分为:13.50/15.00, 本次测试的提交时间为:2017-09-25 1单选(2分) 关于Spring MVC中Dispatche ...
- Java开发工程师(Web方向) - 01.Java Web开发入门 - 第6章.蜂巢
第6章--蜂巢 蜂巢简介 网站开发完,就需要测试.部署.在服务器上运行. 网易蜂巢: 采用Docker容器化技术的云计算平台 https://c.163.com 容器管理:容器可被视作为云主机的服务器 ...
- SQL语言重点学习
数据库的操作任务通常包括以下几个方面: 1.查询数据. 2.在表中插入,修改和删除记录. 3.建立,修改和删除数据对象. 4.控制对数据和数据对象的读写. 5.保证数据库一致性和完整性. SQL语言学 ...
- [JSON].set(keyPath, value)
语法:[JSON].set( keyPath, value ) 返回:[True | False] 说明:设置键值 参数: keyPath [keyPath 必需] 键名路径字符串 value ...
- linux 学习总结---- mysql 总结
用户的创建 ---->修改 ---->删除用户 create alter drop (数据定义语言 DDL) 授权: insert update delete grant *.* revo ...
- OpenMPI源码剖析1:MPI_Init初探
OpenMPI的底层实现: 我们知道,OpenMPI应用起来还是比较简单的,但是如果让我自己来实现一个MPI的并行计算,你会怎么设计呢?————这就涉及到比较底层的东西了. 回想起我们最简单的代码,通 ...
- OpenPAI大规模人工智能平台安装部署文档
环境要求: 如果需要图形界面,需要在Ubuntu系统安装,否则centos系统安装时是没有问题的(web端和命令行进行任务提交) 安装过程需要有另外一台控制端机器(注意:区别于集群所在的任何一台服务器 ...
- SpringCloud IDEA 教学 (五) 断路器控制台(HystrixDashboard)
写在开头 断路器控制台是为了查看断路器运行情况而研发的.本章介绍了断路器控制台的搭建,代码基于之前Client的搭建.HystrixDashboard基于之前配置好的,使用了HystrixComman ...