Tensorflow是一个非常好用的deep learning框架

学完了cs231n,大概就可以写一个CNN做一下MNIST了

tensorflow具体原理可以参见它的官方文档

然后CNN的原理可以直接学习cs231n的课程。

另外这份代码本地跑得奇慢。。估计用gpu会快很多。

import loaddata
import tensorflow as tf #生成指定大小符合标准差为0.1的正态分布的矩阵
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial) #生成偏移变量
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #做W与x的卷积运算,跨度为1,zero-padding补全边界(使得最后结果大小一致)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #做2x2的max池化运算,使结果缩小4倍(面积上)
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1],
strides=[1, 2, 2, 1], padding = 'SAME') #导入数据
mnist = loaddata.read_data_sets('MNIST_data', one_hot=True) x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10]) #filter取5x5的范围,因为mnist为单色,所以第三维是1,卷积层的深度为32
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) #将输入图像变成28*28*1的形式,来进行卷积
x_image = tf.reshape(x, [-1, 28, 28, 1]) #卷积运算,activation为relu
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #池化运算
h_pool1 = max_pool_2x2(h_conv1) #第二个卷积层,深度为64,filter仍然取5x5
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) #做同样的运算
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #full-connected层,将7*7*64个神经元fc到1024个神经元上去
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024]) #将h_pool2(池化后的结果)打平后,进行fc运算
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #防止过拟合,fc层进行dropout处理,参数为0.5
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #第二个fc层,将1024个神经元fc到10个最终结果上去(分别对应0~9)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) #最后结果
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #误差函数使用交叉熵
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) #梯度下降使用adam算法
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #正确率处理
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #初始化
sess = tf.Session()
sess.run(tf.initialize_all_variables()) #进行训练
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = sess.run(accuracy, feed_dict = {
x:batch[0], y_:batch[1], keep_prob : 1.0})
print("step %d, accuracy %g" % (i, train_accuracy))
sess.run(train_step, feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5}) #输出最终结果
print(sess.run(accuracy, feed_dict={
x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))

Tensorflow框架初尝试————搭建卷积神经网络做MNIST问题的更多相关文章

  1. TensorFlow框架(4)之CNN卷积神经网络

    1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...

  2. TensorFlow框架(4)之CNN卷积神经网络详解

    1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...

  3. Pytorch搭建卷积神经网络用于MNIST分类

    import torch from torch.utils.data import DataLoader from torchvision import datasets from torchvisi ...

  4. [转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR

    Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Micha ...

  5. 深度学习笔记 (二) 在TensorFlow上训练一个多层卷积神经网络

    上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首 ...

  6. TensorFlow——CNN卷积神经网络处理Mnist数据集

    CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...

  7. 3层-CNN卷积神经网络预测MNIST数字

    3层-CNN卷积神经网络预测MNIST数字 本文创建一个简单的三层卷积网络来预测 MNIST 数字.这个深层网络由两个带有 ReLU 和 maxpool 的卷积层以及两个全连接层组成. MNIST 由 ...

  8. TensorFlow系列专题(十四): 手把手带你搭建卷积神经网络实现冰山图像分类

    目录: 冰山图片识别背景 数据介绍 数据预处理 模型搭建 结果分析 总结 一.冰山图片识别背景 这里我们要解决的任务是来自于Kaggle上的一道赛题(https://www.kaggle.com/c/ ...

  9. 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)

    1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...

随机推荐

  1. 成都Uber优步司机奖励政策(8月31日~9月6日)

    本周(8月31日-9月6日),优步成都继续推出丰厚保底奖励,日保底总金额最高575元,每周保底最高可获得3595元.优步还加大了乘客端折扣力度,最低五折坐车!单子超多,上线就有单,接单接不停!欢迎各位 ...

  2. [数据结构]_[C/C++]_[链表的最佳创建方式]

    场景 1.链表在C/C++里使用非常频繁, 因为它非常使用, 可作为天然的可变数组. push到末尾时对前面的链表项不影响. 反观C数组和std::vector, 一个是静态大小, 一个是增加多了会对 ...

  3. ORB-SLAM(九)LocalMapping

    LocalMapping作用是将Tracking中送来的关键帧放在mlNewKeyFrame列表中:处理新关键帧,地图点检查剔除,生成新地图点,Local BA,关键帧剔除.主要工作在于维护局部地图, ...

  4. protected修饰符详解

    protected这个修饰符,各大参考书都会这样说:访问权限为类内,包内和子类,因此在父类中定义的方法和成员变量如果为protected修饰的,是可以在不同包中的子类进行访问的,示例代码如下: pac ...

  5. Swift使用AVAudioPlayer来调节游戏的背景音乐大小

    音乐文件的声音大小有时在做为游戏背景音乐时会过大,而如果我们只是简单应用SKAudioNode来加载音乐的话,是无法进行声音大小的调节的,因此我们必须使用更强大的AVAudioPlayer来进行声音大 ...

  6. JVM学习--jvm监控和故障处理工具

    java虚拟机性能监控常用命令 Sun JDK监控和故障处理命令有jps.jstat.jinfo.jmap.jhat.jstack . 1.jps jps:JVM Process Status Too ...

  7. appium关键字:

    ## Appium 服务关键字 <expand_table> |关键字|描述|实例||----|-----------|-------||`automationName`|你想使用的自动化 ...

  8. Tensorflow学习第1课——从本地加载MNIST以及FashionMNIST数据

    很多Tensorflow第一课的教程都是使用MNIST或者FashionMNIST数据集作为示例数据集,但是其给的例程基本都是从网络上用load_data函数直接加载,该函数封装程度比较高,如果网络出 ...

  9. LeetCode 104——二叉树中的最大深度

    1. 题目 2. 解答 如果根节点为空,直接返回 0.如果根节点非空,递归得到其左右子树的深度,树的深度就为左右子树深度的最大值加 1. /** * Definition for a binary t ...

  10. 3.azkaban3.0测试

    测试目标 azkaban多executor下flow的分配方式 azkaban可以同时执行的flow\job个数 azkaban单个job最小使用的内存 相关配置 executor最大线程数: exe ...