+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

——————————————————————————————————————————

http://www.lydsy.com/JudgeOnline/problem.php?id=2337

2  3  6

不会期望怎么办?看题解……

参考:http://blog.csdn.net/PoPoQQQ/article/details/42223843

我们考虑将xor的操作分解成对每一位的操作,然后将边权拆成当前位,模拟xor操作即可。

剩下来的操作就和我的上一篇博客(BZOJ3143)基本上相同了。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
typedef double dl;
const int N=;
const int M=;
struct node{
int to,nxt,w;
}e[M*];
int head[N],cnt,d[N];
inline void add(int u,int v,int w){
cnt++;
e[cnt].to=v;
e[cnt].w=w;
e[cnt].nxt=head[u];
head[u]=cnt;
d[u]++;
return;
}
dl c[N][N],f[N][N],x[N],ans;
inline void Gauss(int n,int m){
for(int i=;i<=n;i++){
int l=i;
for(int j=l+;j<=n;j++)
if(fabs(f[l][i])<fabs(f[j][i]))l=j;
if(l!=i)
for(int j=i;j<=m;j++)
swap(f[l][j],f[i][j]);
for(int j=i+;j<=n;j++){
dl temp=f[j][i]/f[i][i];
for(int k=i;k<=m;k++)
f[j][k]=f[j][k]-f[i][k]*temp;
}
}
for(int i=n;i>=;i--){
dl t=f[i][m];
for(int j=n;j>i;j--)
t-=x[j]*f[i][j];
x[i]=t/f[i][i];
}
return ;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
if(u!=v)add(v,u,w);
}
for(int i=;i<=;i++){
memset(f,,sizeof(f));
memset(x,,sizeof(x));
for(int u=;u<n;u++){
for(int k=head[u];k;k=e[k].nxt){
int v=e[k].to,w=e[k].w;
if(w&(<<i))f[u][v]+=,f[u][n+]+=;
else f[u][v]-=;
}
f[u][u]+=d[u];
}
for(int j=;j<=n+;j++)f[n][j]=;
f[n][n]=;
Gauss(n,n+);
ans+=x[]*(<<i);
}
printf("%.3f\n",ans);
return ;
}

BZOJ2337:[HNOI2011]XOR和路径——题解的更多相关文章

  1. BZOJ2337: [HNOI2011]XOR和路径

    题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...

  2. BZOJ2337:[HNOI2011]XOR和路径(高斯消元)

    Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...

  3. [BZOJ2337][HNOI2011]XOR和路径(概率+高斯消元)

    直接不容易算,考虑拆成位处理. 设f[i]表示i到n的期望路径异或和(仅考虑某一位),则$f[y]=\sum\limits_{exist\ x1\to y=0}\frac{f[x1]}{d[x1]}+ ...

  4. BZOJ2337 [HNOI2011]XOR和路径 【概率dp + 高斯消元】

    题目 题解 突然get到这样路径期望的题目八成是高斯消元 因为路径上的dp往往具有后效性,这就形成了一个方程组 对于本题来说,直接对权值dp很难找到突破口 但是由于异或是位独立的,我们考虑求出每一位的 ...

  5. BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)

    题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...

  6. BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)

    解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...

  7. bzoj千题计划191:bzoj2337: [HNOI2011]XOR和路径

    http://www.lydsy.com/JudgeOnline/problem.php?id=2337 概率不能异或 但根据期望的线性,可以计算出每一位为1的概率,再累积他们的期望 枚举每一位i,现 ...

  8. BZOJ2337: [HNOI2011]XOR和路径 期望概率dp 高斯

    这个题让我认识到我以往对于图上期望概率的认识是不完整的,我之前只知道正着退还硬生生的AC做过的所有图,那么现在让我来说一下逆退,一般来说对于概率性的东西都只是正推,因为有了他爸爸才有了他,而对于期望性 ...

  9. [HNOI2011]XOR和路径 题解

    设 \(f(x)\) 表示从 \(x\) 节点走到 \(n\) 的期望.有 $$f(x)=\sum_{{x,y}}\frac{f(y)\oplus w(x,y)}{{\rm deg}(x)}$$ 由于 ...

随机推荐

  1. 开发Windows服务

          在开发Windows服务时需要注意一点,如果在开发完成后,需要通过命令来进行安装的,那么在开发的时候,需要在服务类上面添加一个安装文件.如下图:               添加完成后,就 ...

  2. Matlab2018年最新视频教程视频讲义(包含代码)

    2018年Matlab最新视频教程视频讲义(包含代码),适合初学者入门进阶学习,下载地址:百度网盘, https://pan.baidu.com/s/1w4h297ua6ctzfturQ1791g 内 ...

  3. YUM本地源制作与yum网络版仓库

    1.修改本机上的YUM源配置文件,将源指向自己 cd /etc/yum.repos.d/ 备份原有的YUM源的配置文件 rename .repo .repo.bak * rename CentOS-M ...

  4. 刚安装的Linux Centos7使用yum安装firefox时提示:cannot find a valid baseurl for repo

    出现这个问题是因为yum在安装包的过程中,虽然已经联网,但是没法解析远程包管理库对应的域名,所以我们只需要在网络配置中添加上DNS对应的ip地址即可. 解决参考链接:https://blog.csdn ...

  5. Java应用基础微专业-工程篇

    第1章-命令行 1.1 命令行基础 ls -a: list all files (including hidden files) .DS_Store: files detailed informati ...

  6. Period :KMP

    I - Period Problem Description For each prefix of a given string S with N characters (each character ...

  7. CTC (Connectionist Temporal Classification) 算法原理

    (原创文章,转载请注明出处哦~) 简单介绍CTC算法 CTC是序列标注问题中的一种损失函数. 传统序列标注算法需要每一时刻输入与输出符号完全对齐.而CTC扩展了标签集合,添加空元素. 在使用扩展标签集 ...

  8. 局部加权回归(LWR) Matlab模板

    将百度文库上一份局部加权回归的代码,将其改为模板以便复用. q2x,q2y为数据集,是n*1的矩阵: r是波长参数,就是对于距离的惩罚力度: q_x是要拟合的数据横坐标,是1*n的矩阵: 得到的q_y ...

  9. vscode开发智能合约

    开发工具 EOS 开发终极神器-vscode (你绝对找不到的干货) lome · 2018年04月19日 · 最后由 18636292520 回复于 2018年09月15日 · 15672 次阅读 ...

  10. [原创]Docker学习记录: Shipyard+Swarm+Consul+Service Discover 搭建教程

    网上乱七八糟的资料实在是太多了, 乱, 特别乱, 而看书呢, 我读了2本书, 一本叫做<>, 另一本叫做<< Docker进阶与实战>> 在 服务发现这块讲的又不清 ...